Inattention and Inertia in Household Finance: Evidence from the Danish Mortgage Market

Steffen Andersen, John Y. Campbell, Kasper Meisner Nielsen, and Tarun Ramadorai

First draft: July 2014
This version: March 2017

1Andersen: Department of Finance, Copenhagen Business School, Porcelaenshaven 16A, DK-2000 Frederiksberg, Denmark, Email: sa.eco@cbs.dk. Campbell: Department of Economics, Littauer Center, Harvard University, Cambridge MA 02138, USA, and NBER. Email: john_campbell@harvard.edu. Nielsen: Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China. Email: nielsen@ust.hk. Ramadorai: Imperial College, London SW7 2AZ, UK, and CEPR. Email: t.ramadorai@imperial.ac.uk. We thank the Sloan Foundation for financial support. We are grateful to the Association of Danish Mortgage Banks (ADMB) for providing data and facilitating dialogue with the individual mortgage banks, and to senior economists Bettina Sand and Kaare Christensen at the ADMB for providing us with valuable institutional details. We thank Sumit Agarwal, Joao Cocco, John Driscoll, Xavier Gabaix, Samuli Knupfer, David Laibson, Tomasz Piskorski, Tano Santos, Antoinette Schoar, Amit Seru, Susan Woodward, Vincent Yao, and seminar participants at the Board of Governors of the Federal Reserve/GFLEC Financial Literacy Seminar at George Washington University, the NBER Summer Institute Household Finance Meeting, the Riksbank-EABCN conference on Inequality and Macroeconomics, the American Economic Association 2015 Meeting, the Real Estate Seminar at UC Berkeley, the Federal Reserve Bank of New York, Copenhagen Business School, Columbia Business School, the May 2015 Mortgage Contract Design Conference, the NUS-quires Real Estate Symposium, the Booth School of Business at the University of Chicago, the European Finance Association 2015 meeting, the FIRS 2016 meeting, the Imperial College London-FCA Conference on Mortgage Markets, Cass Business School, and the Banca d’Italia for many useful comments, and Josh Abel for excellent and dedicated research assistance.
Abstract

A common problem in household finance is that households are often inactive in response to incentives. Mortgages are generally the largest household liability, and mortgage refinancing is an important channel for monetary policy transmission, so inactivity in this setting can be socially costly. We study how the Danish population responds to mortgage refinancing incentives between 2010 and 2014, building an empirical model that identifies two important sources of inactivity: inattention (a low probability of responding to a refinancing incentive in a given quarter), and inertia (a psychological addition to the financial cost of refinancing). Inertia is hump-shaped in age and generally increasing in socioeconomic status, while inattention is highest for older households and households with low income, education, housing wealth, and financial wealth, making it the key determinant of low refinancing among households with low socioeconomic status. Our model highlights the importance of policies to make such households aware of refinancing opportunities or to refinance mortgages automatically.
1 Introduction

A pervasive finding in studies of household financial decisionmaking is that households respond slowly to changing financial incentives. Inaction is common, even in circumstances where market conditions are changing continuously, and actions often occur long after the incentive to take them has first arisen. Well known examples include participation, saving, and asset allocation decisions in retirement savings plans and portfolio rebalancing in response to fluctuations in risky asset prices.\footnote{See for example Agnew, Balduzzi, and Sunden (2003), Choi, Laibson, Madrian, and Metrick (2002, 2004), and Madrian and Shea (2001) on retirement savings plans, and Blias, Georgarakos, and Haliassos (2010), Brunnermeier and Nagel (2008), and Calvet, Campbell, and Sodini (2009a) on portfolio rebalancing.} This paper studies the refinancing of fixed-rate mortgages, a particularly important decision given the size of mortgages relative to households’ income and balance sheets and given the role of refinancing in the transmission mechanism of monetary policy.

One explanation for inaction is that households are \textit{inattentive}, monitoring their financial circumstances intermittently rather than continuously. Empirical models of inattention specify a constant duration of time intervals during which households are inattentive or a constant probability of paying attention in any one period, as in the well-known Taylor (1980) and Calvo (1983) models of firms’ price-setting decisions. Duffie and Sun (1990), Gabaix and Laibson (2002), Reis (2006a,b), and Abel, Eberly, and Panageas (2007) have incorporated fixed costs of gathering information into models of households’ financial decisions and firms’ pricing decisions, and have derived conditions under which it is optimal to have intervals of inattention with constant duration.\footnote{An alternative to a fixed cost of gathering information is a cost that increases in the content of the information, as in the work of Sims (2003), Moscarini (2004), Woodford (2009), and Matějka and McKay (2015) which uses entropy as a measure of information content. Kacperczyk, Van Niewerburgh, and Veldkamp (2016), in a similar spirit, assume a constraint on the sum of precisions of signals that can be observed.}

An alternative explanation for inaction is that action itself incurs fixed costs, so that it should only be undertaken when the benefits are sufficiently large. (S,s) models of optimal inaction in the presence of fixed costs have been a staple of the economics literature since the 1950s, and have been applied to firms’ price setting behavior by Caplin and Spulber
(1987), Caballero and Engel (1991), and Caplin and Leahy (1991) among others. In the case of mortgage refinancing, monetary refinancing costs justify an inaction range with no refinancing until the interest rate savings reach a threshold that triggers action. Agarwal, Driscoll, and Laibson (ADL 2013) have recently provided a convenient closed-form solution for this threshold under plausible assumptions about the dynamics of interest rates. When households still fail to act beyond the ADL threshold, this could be explained by psychological costs of refinancing that add to the direct financial costs. We refer to inaction generated by this mechanism as inertia, since it can only be overcome by a sufficiently strong impulse in the form of a large interest rate incentive.

In this paper we estimate a model of mortgage refinancing that incorporates both inattention and inertia, that is, both a constant probability of failing to refinance in any period and a psychological refinancing cost that widens the inaction range. Inattention and inertia can be separately identified, despite the fact that we observe neither households’ observations of data nor their psychological costs of taking action, because inattention and inertia have different effects on refinancing behavior at different levels of refinancing incentives. Inattention lowers the probability that a household refines regardless of the incentive to do so, while the effect of inertia disappears when the incentive is sufficiently large.

Inattention and inertia also have different implications for refinancing dynamics. Consider for example a one-time decline in interest rates to a lower level that then remains unchanged. In a model with pure inattention, the interest rate decline has delayed effects on refinancing because some households are only attentive with a lag, but over time all household...
holds with refinancing incentives above the ADL threshold do refinance. In a model with pure inertia, the interest rate decline generates an instantaneous refinancing wave by the subset of households whose refinancing incentives are above the threshold defined by their psychological refinancing costs, but no further refinancing occurs after the initial period.

We measure a rich set of borrower and mortgage characteristics and allow both inattention and inertia to vary cross-sectionally with these characteristics. In addition, our model includes time effects that shift the average level of attention over time, and a smooth response function to refinancing incentives that can be interpreted as the result of random household-level shocks to inertia. Our specification allows us to explore how these determinants of inaction vary across the population of mortgage borrowers. Our results are of interest not only to economists seeking to understand the economic forces that determine household behavior, but also to macroeconomic policymakers who need to estimate the impact of monetary policy on the budgets and consumption decisions of different types of households.

Almost all previous research on mortgage refinancing has studied US data. Mortgage prepayment behavior and the risk created by random time-variation in prepayment were the main preoccupations of a large literature on the pricing and hedging of US mortgage-backed securities in the years before the global financial crisis of the late 2000s. However US data are problematic in two respects. First, the US mortgage system constrains refinancing when households have negative home equity or impaired credit scores, and it can be very difficult to fully control for these constraints. Second, it is challenging to measure borrower characteristics in the US system since these are reported only at the time of a mortgage

6 See for example Schwartz and Torous (1989), McConnell and Singh (1994), Stanton (1995), Deng, Quigley, and Van Order (2000), Bennett, Peach, and Peristiani (2001), and Gabaix, Krishnamurthy, and Vigneron (2007). Two important exceptions to the US focus of the prepayment literature are Miles (2004) and Bajo and Barbi (2016), which study the UK and Italy respectively.

7 Johnson, Meier, and Toubia (2015) and Keys, Pope, and Pope (2016) surmount this difficulty by studying pre-approved refinancing offers, but these are relatively infrequent and thus samples are small. Earlier attempts to control for constraints include Archer, Ling, and McGill (1996), Caplin, Freeman, and Tracy (1997), Campbell (2006), and Schwartz (2006). In the aftermath of the global financial crisis, the US government tried to relax refinancing constraints through the Home Affordable Refinance Program (HARP), but the effectiveness of this program remains an outstanding research question (Zandi and deRitis 2011, Tracy and Wright 2012, Zhu 2012).
application through the form required by the Home Mortgage Disclosure Act (HMDA), and hence one cannot directly compare the characteristics of refinancers and non-refinancers at a point in time. An alternative is to use survey data, but these can be extremely noisy.\footnote{See LaCour-Little (1999), Campbell (2006), Schwartz (2006), and Agarwal, Rosen, and Yao (2012) for attempts to measure refiner characteristics using US data. Schwartz (2006) documents the poor data quality of the American Housing Survey.}

We instead study a comprehensive administrative dataset on recent refinancing decisions in Denmark. The Danish mortgage system is similar to the US system in that long-term fixed-rate mortgages are common and can be refinanced without penalties related to the level of interest rates. However the Danish context has two special advantages that make it ideal for our purpose. First, Danish households are free to refinance whenever they choose to do so, even if their home equity is negative or their credit standing has deteriorated, provided that they do not increase their outstanding principal balance. This allows us to study household inattention and inertia without having to control for the additional constraints that limit refinancing in the US. Second, the Danish statistical system provides us with accurate administrative data on household demographic and financial characteristics, for all mortgage borrowers including both refinancers and non-refinancers. This allows us to characterize in great detail the cross-sectional determinants of inattention and inertia.

We start our empirical analysis by calculating the ADL threshold for rational refinancing for every mortgage in our sample. We show that errors of omission, where households fail to refinance despite incentives greater than the ADL threshold for rational refinancing, are much more common in the Danish data than errors of commission, where households refinance too early at savings less than the ADL threshold.\footnote{We borrow this terminology from Agarwal, Rosen, and Yao (2016), who report similar results in US data but can only study delays in refinancing among refinancers, since they do not have data on people who fail to refinance altogether. Keys, Pope, and Pope (2016) use data on outstanding mortgages to circumvent this problem, but give up the ability to measure borrower characteristics contemporaneously.} We quantify the costs of these errors by calculating refinancing efficiency, the ratio of actual savings from refinancing to the savings that could be achieved by refinancing optimally. We show that older households and those with lower education and income have substantially lower refinancing efficiency.
We next specify and estimate a model that explains this fact using inattention and inertia, both of which can vary with demographic characteristics of households. We find that older households and households with lower education, income, housing wealth, and financial wealth are all more likely to be inattentive. Inertia, on the other hand, is hump-shaped in age and generally increasing in measures of socioeconomic status. It has a particularly large effect on households with high financial wealth. Thus these two causes of inaction operate differently on different types of households.

We use our model to simulate the effects of alternative mortgage policies on refinancing rates, with special emphasis on poorer households. Given a large interest rate stimulus that would justify refinancing by 90% of fully rational households, the key to increasing the overall refinancing rate and especially the refinancing rate of poorer households is to increase the attention that households pay to their mortgages. Elimination of fixed refinancing fees, to make the cost of refinancing proportional to mortgage size, also stimulates refinancing by households with smaller mortgages but has a more modest effect. Such policies, or in the extreme the creation of automatically refinancing mortgages, can increase the ability of expansionary monetary policy to stimulate household consumption in a fixed-rate mortgage system like those of Denmark and the US.

Our work fits into a broader literature on the difficulties households have in managing their mortgage borrowing. Campbell and Cocco (2003, 2015) specify models of optimal choice between FRMs and ARMs, and optimal prepayment and default decisions, showing how challenging it is to make these decisions correctly. Chen, Michaux, and Roussanov (2013) similarly study decisions to extract home equity through cash-out refinancing, while Khandani, Lo, and Merton (2013) and Bhutta and Keys (2016) argue that households used cash-out refinancing to borrow too aggressively during the housing boom of the early 2000s. Bucks and Pence (2008) provide direct survey evidence that ARM borrowers are unaware of the exact terms of their mortgages, specifically the range of possible variation in their mortgage rates. Woodward and Hall (2010, 2012) study the fees that borrowers pay at mortgage origination, arguing that insufficient shopping effort leads to excessive fees.
The organization of the paper is as follows. Section 2 explains the Danish mortgage system and household data. Section 3 summarizes the deviations of Danish household behavior from a benchmark model of rational refinancing. Section 4 sets up our econometric model of household inattention and inertia, estimates the model empirically, and interprets the cross-sectional patterns of coefficients. Section 5 concludes. An online appendix (Andersen, Campbell, Nielsen, and Ramadorai 2017) provides supporting details.

2 The Danish Mortgage System and Household Data

2.1 The Danish mortgage system

The Danish mortgage system has attracted considerable attention internationally because, while similar to the US system in offering long-term fixed-rate mortgages without prepayment penalties, it has numerous design features that differ from the US model and have performed well in recent years (Campbell 2013, Gyntelberg et al. 2012, Lea 2011). In this section we briefly review the funding of Danish mortgages and the rules governing refinancing. (The online appendix provides a few additional details on the Danish system.)

A. Mortgage funding

Danish mortgages, like those in some other continental European countries, are funded using covered bonds: obligations of mortgage lenders that are collateralized by pools of mortgages. The Danish market for covered mortgage bonds is the largest in the world, both in absolute terms and relative to the size of the economy. The market value of all Danish outstanding mortgage bonds in 2014 was DKK 2,756bn (EUR 370bn), exceeding the Danish GDP of DKK 1,977bn (EUR 265bn).10

10Data from the European Covered Bonds Council show that the largest covered mortgage bond markets in 2014 were, in order, Denmark, Spain, Sweden, Germany, and France. Germany had the largest overall covered bond market, followed by Denmark and France.
Mortgages in Denmark are issued by mortgage banks that act as intermediaries between investors and borrowers. Investors buy mortgage bonds issued by the mortgage bank, and borrowers take out mortgages from the bank. All lending is secured and mortgage banks have no influence (apart from the initial screening) on the yield on the loans granted, which is entirely determined by the market. Borrowers pay the coupons on the mortgage bonds, as well as an administration fee to the mortgage bank. This fee is roughly 70 basis points on average, and depends on the loan-to-value (LTV) ratio on the mortgage, but is independent of household characteristics.

There is no direct link between the borrower and the investor. Instead investors buy bonds that are backed by a pool of borrowers. If a borrower defaults, the mortgage bank must replace the defaulted mortgage in the pool that backs the mortgage bond. This ensures that investors are unaffected by defaults in their borrower pool so long as the mortgage bank remains solvent.

In the event of a borrower default, the mortgage bank can enforce its contractual right by triggering a forced sale (foreclosure) which is carried through by the enforcement court, part of the court system in Denmark. To the extent that the proceeds of a forced sale are insufficient to pay off mortgages, uncovered claims are converted to personal claims held by the mortgage bank against the borrower. In other words Danish mortgages (like those elsewhere in Europe) have personal recourse against borrowers.

These features of the Danish system, together with strict regulation of mortgage loan-to-value ratios, mortgage maturities, and housing valuation procedures, have led to unusual stability of mortgage funding. There have been no mortgage bond defaults and only a few cases of delayed payments to mortgage bond investors, the last of which occurred in the 1930s.

Danish mortgage bonds are currently issued by seven mortgage banks. While mortgages on various types of real properties are eligible as collateral for mortgage bonds, mortgages on residential properties dominate most collateral pools. Owner-occupied housing makes up
around 60% of mortgage pools, followed by around 20% for rental and subsidized housing. Agriculture and commercial properties make up the remaining 20% of the market.

Traditionally the Danish system has been dominated by fixed-rate mortgages, although adjustable-rate mortgages have become more popular in the last 15 years. Badarinza, Campbell, and Ramadorai (2015) report that the average share of adjustable-rate mortgages in Denmark was 45% in the period 2003–13, with a standard deviation of 13%. At the beginning of our sample period in 2009, the adjustable-rate mortgage share was about 40%.

B. Refinancing

Fixed-rate mortgage borrowers in Denmark have the right to prepay their mortgages without penalty. Refinancing fees increase with mortgage size but do not vary with the level of interest rates. This is similar to the US system but differs from another leading fixed-rate European mortgage system, the German system, where a fixed-rate mortgage can only be prepaid at a penalty that compensates the mortgage lender for any decline in interest rates since the mortgage was originated. However the prepayment system in Denmark also differs from the US system in several important respects.

The Danish mortgage system imposes minimal barriers to any refinancing that does not “cash out” (in a sense to be made more precise below). Danish borrowers can refinance their mortgages to reduce their interest rate and/or extend their loan maturity, without cashing out, even if their homes have declined in value so they have negative home equity. Related to this, refinancing without cashing out does not require a review of the borrower’s credit quality. These features of the system imply that all mortgage borrowers can benefit from a decline in interest rates, even in a weak economy with declining house prices and consumer deleveraging.

11 Denmark does not have a system of continuous credit scores like the widely used FICO scores in the US. Instead, there is what amounts to a zero/one scoring system that can be used to label an individual as a delinquent borrower (“dårlig betaler”) who has unpaid debt outstanding. A delinquent borrower would be unlikely to obtain a mortgage, but a borrower with an existing mortgage can refinance, without cashing out, even if he or she has been labeled as delinquent since the mortgage was taken out.
The mechanics of refinancing in Denmark are as follows. The mortgage borrower must repurchase mortgage bonds corresponding to the mortgage debt, and deliver them to the mortgage lender. This repurchase can be done either at market value or at face value. The option to refinance at market value becomes relevant if interest rates rise; it prevents “lock-in” by allowing homeowners who move to buy out their old mortgages at a discounted market value rather than prepaying at face value as would be required in the US system. It also allows homeowners to take advantage of disruptions in the mortgage bond market by effectively buying back their own debt if a mortgage-bond fire sale occurs. In an environment of declining interest rates such as the one we study, the option to refinance at face value is relevant.

An important point is that mortgage bonds in Denmark are issued with discrete coupon rates, historically at integer levels such as 4% or 5%.12 This discreteness helps to ensure a liquid market for mortgage bonds. Market yields, of course, fluctuate continuously. Danish mortgage bonds can never be issued at a premium to face value, since this would allow instantaneous advantageous refinancing, and normally are issued at a discount; in other words, the market yield is somewhat above the discrete coupon at issue. This implies that to raise, say, DKK 1 million for a mortgage, bonds must be issued with a face value which is higher than DKK 1 million. Refinancing the mortgage requires buying the full face value of the bonds that were originally issued to finance it. Therefore the interest saving from refinancing in the Danish system is given by the spread between the coupon rate on the old mortgage bond (not the yield on the mortgage when it was issued) and the yield on a new mortgage.

An example may make this easier to understand. Suppose that a household requires a loan of DKK 1 million (about $150,000 or EUR 130,000 at October 2016 exchange rates) in order to purchase a house. Suppose that the market yield on a mortgage bond of the required term is 4.25%, but the coupon rate on the bond is somewhat lower at 4%. As a

12More recently, bonds have been issued with non-integer coupons (2.5% and 3.5%) in response to the current low-interest-rate environment.
result of this difference between the coupon rate and the market yield, the DKK 1 million loan must be financed by issuing bonds in the market with a face value which is higher than DKK 1 million (say DKK 1.1 million). The principal balance of the mortgage is initially DKK 1.1 million.

Now consider what happens if market yields drop to 3.25%. The borrower can refinance by purchasing the original mortgage bond at face value and delivering it to the mortgage bank. To fund the purchase, the borrower will issue new mortgage bonds carrying the current market yield of 3.25%, and a lower discrete coupon (3% in this example). The interest saving from refinancing is $4\% - 3.25\% = 0.75\%$. This is the spread between the original coupon rate at issuance and the current market yield, rather than the spread between the old and new yields.

Since this transaction requires issuing a new mortgage bond with a market value of DKK 1.1 million and a face value above DKK 1.1 million, the principal balance of the mortgage increases as a result of the refinancing. However, it does not count as a cash-out refinancing provided that the market value of the newly issued mortgage bond is no greater than the face value of the old mortgage bond.

Cash-out refinancing does require sufficiently positive home equity and good credit status. For this reason, cash-out refinancing has been less common in Denmark in the period we examine since the onset of the housing downturn in the late 2000s. In our dataset 26% of refinancings are associated with an increase in mortgage principal of 10% or more, enough to classify these as cash-out refinancings with a high degree of confidence. In the paper we present results that include these refinancings, but in the online appendix we report broadly similar results excluding them.

13This may be regarded as the Danish equivalent of “points” in the US system, cash paid up front to lower the interest rate on a mortgage. The Danish system allows points to be borrowed, increasing the mortgage principal balance. We thank Susan Woodward for pointing out this analogy.
2.2 Danish household data

A. Data sources

Our dataset covers the universe of adult Danes in the period between 2008 and 2015, and contains demographic and economic information. We derive data from four different administrative registers made available through Statistics Denmark.

We obtain mortgage data from the Danmarks Nationalbank, which in turn obtains the data from mortgage banks through the Association of Danish Mortgage Banks (Realkreditrådet) and the Danish Mortgage Banks’ Federation (Realkreditforeningen). The data cover all mortgage banks in Denmark, and thus include all mortgages in Denmark. The data contain the personal identification number of borrowers, as well as a mortgage id, and information on the terms of the mortgage (principal, outstanding principal, coupon, annual fees, maturity, loan-to-value, issue date, etc.) The mortgage data are available annually from 2009 to 2014.

We obtain demographic information from the official Danish Civil Registration System (CPR Registeret). These records include the individual’s personal identification number (CPR), as well as their name; gender; date of birth; and the individual’s marital history (number of marriages, divorces, and history of spousal bereavement). The administrative record also contains a unique household identification number, as well as CPR numbers of each individual’s spouse and any children in the household. We use these data to obtain demographic information about the borrower. The sample contains the entire Danish population and provides a unique identifying number across individuals, households, and time.

We obtain income and wealth information from the official records at the Danish Tax Authority (SKAT). This dataset contains total and disaggregated income and wealth information by CPR numbers for the entire Danish population. SKAT receives this information directly from the relevant third-party sources, because employers supply statements of wages paid to their employees, and financial institutions supply information to SKAT on their cus-
tomers’ deposits, interest paid (or received), security investments, and dividends. Because taxation in Denmark mainly occurs at the source level, the income and wealth information are highly reliable.

Some components of wealth are not recorded by SKAT. The Danish Tax Authority does not have information about individuals’ holdings of unbanked cash, the value of their cars, their private debt (i.e., debt to private individuals), pension savings, private businesses, or other informal wealth holdings. This leads some individuals to be recorded as having negative net financial wealth because we observe debts but not corresponding assets, for example in the case where a person has borrowed to finance a new car.

Finally, we obtain the level of education from the Danish Ministry of Education (Udervisningsministeriet). This register identifies the highest level of education and the resulting professional qualifications. On this basis we calculate the number of years of schooling.

B. Sample selection

Our sample selection entails linking individual mortgages to the household characteristics of borrowers. We define a household as one or two adults living at the same postal address. To be able to credibly track the ownership of each mortgage we additionally require that each household has an unchanging number of adult members over two subsequent years. This allows us to identify 2,698,140 households in 2009 (the number of households increases slightly over time to 2,795,996 in 2014). Of these 2,698,140 households, we are able to match 2,593,724 households to a complete set of information from the different registers. The missing information for the remaining households generally pertains to their educational qualifications, often missing on account of verification difficulties for immigrants.

To operationalize our analysis of refinancing, we begin by identifying households with a single fixed-rate mortgage. This is done in four steps year by year. First we identify households holding any mortgages in a given year, leaving us with—for example—973,100 households in 2009. Second, to simplify the analysis of refinancing choice, we focus on house-
holds with a single mortgage in two consecutive years, leaving us with 742,919 households in 2009–10. Third, we focus on households with fixed-rate mortgages as these are the households who have financial incentives to refinance when interest rates decline. This leaves us with 330,563 households for the refinancing decision in 2010. In total we have 1,431,654 household observations across the five years. The number of fixed-rate mortgages declines over these years, since in our sample period adjustable-rate mortgages were chosen by a majority of both refinancers and new mortgage borrowers. Finally, we expand the data to quarterly frequency using mortgage issue dates reported in the annual mortgage data, giving us a total of 5,603,733 quarterly refinancing decisions.14

We observe a total of 247,047 refinancings across the five years: 74,712 in 2010, 25,444 in 2011, 70,168 in 2012, 25,515 in 2013 and 51,208 in 2014. Of these, 94,700 refinancings were from fixed-rate to several types of adjustable-rate mortgages, and 152,357 from fixed-rate to fixed-rate mortgages. We treat both types of refinancings in the same way and do not attempt to model the choice of an adjustable-rate versus a fixed-rate mortgage.15

Collectively, our selection criteria ensure that the refinancings we measure are undertaken for economic reasons. Refinancing in our sample occurs when a household changes from one fixed-rate mortgage to another mortgage (whether it is fixed- or adjustable-rate) on the same property. Mortgage terminations that are driven by household-specific events, such as moves, death, or divorce, are treated separately by predicting the probability of mortgage termination, and using the fitted probability as an input into the Agarwal, Driscoll, and Laibson (2013) model of optimal refinancing. This approach differs from that of the US prepayment literature, which seeks to predict all terminations regardless of their cause.

14This is less than the number of yearly observations times four (5,726,616), because some households refinance from a fixed-rate mortgage to an adjustable-rate mortgage, and drop out of the sample in subsequent quarters in the year. Our imputation of quarterly refinancings will be incorrect if a mortgage refinances twice in the same calendar year (since only the second refinancing will be recorded at the end of the year), but we believe this event to be exceedingly rare.

15The comparison of adjustable- and fixed-rate mortgages is complex and has been discussed by Dhillon, Shilling, and Sirmans (1987), Brueckner and Follain (1988), Campbell and Cocco (2003, 2015), Koijen, Van Hemert, and Van Nieuwerburgh (2009), Johnson and Li (2014), and Badarinza, Campbell, and Ramadorai (2017) among others.
3 Deviations from Rational Refinancing

3.1 The optimal refinancing threshold

Optimal refinancing of a fixed-rate mortgage, given fixed costs of refinancing, is a complex real options problem. To measure the optimal refinancing threshold, we adapt a formula due to Agarwal, Driscoll, and Laibson (ADL 2013).

The ADL model says that a household should refinance when its incentive to do so is positive. We write the incentive as I_{it}, to indicate that it depends on the characteristics of household i and the household’s mortgage at time t. In the Danish context the incentive is the difference between the coupon rate on the mortgage bond corresponding to the current mortgage C_{it}^{old}, less the interest rate on a new mortgage Y_{it}^{new}, less a threshold level O_{it}, which again depends on household and mortgage characteristics:

$$ I_{it} = C_{it}^{old} - Y_{it}^{new} - O_{it}. \quad (1) $$

The threshold O_{it} takes the fixed cost of refinancing into account, and captures the option value of waiting for further interest-rate declines. ADL present a closed-form solution:

$$ O_{it} = \frac{1}{\psi_{it}} \left[\phi_{it} + W(-\exp(-\phi_{it})) \right], \quad (2) $$

$$ \psi_{it} = \sqrt{\frac{2(\rho + \lambda_{it})}{\sigma}}, \quad (3) $$

$$ \phi_{it} = 1 + \psi_{it} (\rho + \lambda_{it}) \frac{\kappa(m_{it})}{m_{it}(1 - \tau)}. \quad (4) $$

Here $W(.)$ is the Lambert W-function, and ψ_{it} and ϕ_{it} are two household-specific inputs to the formula, which in turn depend on interpretable marketwide and household-specific
parameters. The marketwide parameters are \(\rho \), the discount rate; \(\sigma \), the volatility of the annual change in the interest rate; and \(\tau \), the marginal tax rate that determines the tax benefit of mortgage interest deductions. We calibrate these parameters using a mixture of the recommended parameters in ADL and sensible values given the Danish context, setting \(\sigma = 0.0074 \), \(\tau = 0.33 \), and \(\rho = 0.05 \).

An important household-specific parameter is \(m_{i,t} \), the size of the mortgage for household \(i \) at time \(t \). This determines \(\kappa(m_{i,t}) \), the monetary refinancing cost. We establish from conversations with Danish mortgage banks that the total DKK monetary cost of refinancing is well approximated by

\[
\kappa(m_{i,t}) = 3,000 + \max(0.002m_{i,t}, 4000) + 0.001m_{i,t}. \tag{5}
\]

The first two terms correspond to bank handling fees in the range DKK 3,000—7,000 (about $450—1,050) and the third term represents the cost of trading mortgage bonds to implement the refinancing. For extremely large mortgages, the third term may not increase directly with the size of the new mortgage (as there are significant incentives for wealthy households to shop, and variation across banks in their “capping” policies) so we additionally winsorize \(\kappa(m_{i,t}) \) at the 99th percentile of (5), a value just below DKK 10,000 (about $1,500). This additional winsorization does not make a material difference to our results.

The remaining household-specific parameter is \(\lambda_{i,t} \), the expected exogenous rate of decline in the real value of the mortgage. Following ADL we define \(\lambda_{i,t} \) as

\[
\lambda_{i,t} = \mu_{i,t} + \frac{Y_{i,t}^{\text{old}}}{\exp(Y_{i,t}^{\text{old}} T_{i,t}) - 1} + \pi_{t}. \tag{6}
\]

Here \(\mu_{i,t} \) is the probability of exogenous mortgage termination. We estimate \(\mu_{i,t} \) at the house-
hold level using additional data in an auxiliary regression. Mortgage termination can occur for many reasons, including the household relocating and selling the property, experiencing a windfall and paying down the principal amount, or simply because the household ceases to exist because of death or divorce. (We exclude refinancing from the definition of mortgage termination.) Without seeking to differentiate these causes, we use all households with a single fixed-rate mortgage and estimate, for each year in the sample,

$$\mu_{i,t} = p(\text{Termination}) = p(\mu' z_{it} + \epsilon_{it} > 0),$$

where ϵ_{it} is a standard logistic distributed random variable, using a vector z_{it} of household characteristics.\(^{18}\)

The remaining parameters in (6) are Y_{it}^{old}, the yield on the household’s pre-existing (“old”) mortgage; $T_{i,t}$, the number of years remaining on the mortgage; and π_t, the inflation rate. We set π_t equal to realized consumer price inflation over the past year, a standard proxy for expected inflation that varies between 2.0% and 3.0% during our sample period.

We note two minor limitations of the ADL formula in our context. First, it gives us the incentive for a household to refinance from a fixed-rate mortgage to another fixed-rate mortgage. Some households in our sample refinance from fixed-rate to adjustable-rate mortgages, implying that they perceive a new ARM as even more attractive than a new FRM. We do not attempt to model this decision here but simply use the ADL formula for all initially fixed-rate mortgages and refinancings, whether or not the new mortgage carries a fixed rate.

Second, the ADL formula ignores the fact, unique to the Danish system, that refinancing may increase the mortgage principal balance because the coupon on the new mortgage bond is lower than the market yield. This increase in the mortgage principal has no economic effect

\(^{18}\)Table B1 in the online appendix reports the estimated coefficients, and Figure B1 shows a histogram of the estimated mortgage termination probabilities, with a dashed line showing the position of the ADL suggested “hardwired” level of 10% per annum. The mean of our estimated termination probabilities is 11.2%, larger than the median of 8.1% because the distribution of termination probabilities is right-skewed. The standard deviation of this distribution is 9.5%.

16
except in the event that interest rates decline further in the future, leading the household to consider refinancing the new mortgage. The value of the refinancing option attached to the new mortgage is determined by the new mortgage bond coupon, and is lower than that assumed by the ADL formula whenever that coupon is lower than the current market yield, in other words whenever the mortgage principal increases. Fortunately this effect is extremely small, as shown by ADL in a comparison of their formula with an earlier analysis by Chen and Ling (1989). The chief difference between the two papers is that Chen and Ling’s baseline calculations exclude the possibility of subsequent refinancings. The difference between the ADL and Chen-Ling thresholds is therefore an upper bound on the effect of principal balance increase in the Danish system. Equating their parameters to Chen and Ling’s values, ADL find a threshold difference of 10 basis points or less. This difference is small enough that it would make no meaningful difference to any of our empirical findings.

3.2 Refinancing and incentives

Table 1 summarizes the characteristics of Danish fixed-rate mortgages, and households’ propensity to refinance them, during each of the five years of our sample period from 2010 through 2014, and for our complete annual dataset.

The average fixed-rate mortgage in our dataset has an outstanding principal of DKK 928,000 (about $139,000 or EUR 121,000) and almost 23 years to maturity. These characteristics are fairly stable over our sample period, although average principal does increase in the last two years of the sample. The loan-to-value ratio is almost 60% on average, again

19Importantly, the principal balance does not play any special role in the event of mortgage default. Even in delinquency, the household has the option to pay the market value or the face value of the mortgage bond, whichever is lower. Note also that delinquency is rare in Denmark, affecting only about 0.5% of the households in our sample.

20Chen and Ling’s parameter values are close enough to those in our paper for this comparison to be relevant. Their value of $\kappa/(1 - \tau)$ is 2, while ours is 1.5, implying that our thresholds are slightly smaller than theirs. Their calibrated annual interest rate volatility is 0.012, whereas ours is 0.0074, but this difference has an ambiguous effect on the value of future refinancing options, because lower interest rate volatility lowers the refinancing threshold but also lowers the probability that any fixed threshold will be hit in the future. We thank Susan Woodward for highlighting this issue.

17
increasing somewhat at the end of the sample period. Over the five years 2010 to 2014, the average refinancing rate for fixed-rate mortgages was almost 17%, and among these about 62% were refinanced to fixed-rate mortgages and 38% to adjustable-rate mortgages. The refinancing rate was considerably higher in three years, 2010, 2012, and 2014 (22%, 25%, and 19% respectively) than in 2011 and 2013 (about 9% in each of these years). In other words, our sample includes three refinancing waves and two quiet periods between them.

Table B2 in the online appendix summarizes the cross-sectional distribution of refinancing incentives, calculated using coupon rates on outstanding mortgage bonds in relation to current mortgage yields, and the ADL formula from the previous section. Across all years, the median interest spread between the old coupon rate and the current mortgage yield is 0.63%, while the median value of the ADL threshold is 0.76%. Unsurprisingly, then, the median refinancing incentive is negative at -0.15%. However, positive refinancing incentives are quite common, characterizing 37% of mortgages in 2010, 30% in 2011, 45% in 2012, 37% in 2013, and 55% in 2014. In the right tail of the incentive distribution, the 95th percentile incentive is 1.33% and the 99th percentile is 2.31%.

Figure 1 illustrates the dynamics of refinancing in relation to refinancing incentives. The top panel is a bar chart that shows the number of refinancings in each quarter. The components of each bar are shaded to indicate the coupon rate of the refinancing mortgage, with high coupons shaded pale blue and low coupons shaded in dark blue, from 7% or above at the high end to 3.5% at the low end. The lower panel plots the Danish mortgage interest

21 To ensure that we match old to new mortgages appropriately, we match using the remaining tenure on the old mortgage, within 10-year bands. That is, in each quarter, for mortgages with 10 or fewer years to maturity, we use the average 10 year mortgage bond yield to compute incentives, and for remaining tenures between 10-20 years (>20 years) we use the average 20 year (30 year) bond yield. These 10, 20, and 30 year yields are calculated as value-weighted averages of yields on all newly issued mortgage bonds with maturities of 10, 20, and 30 years, respectively.

22 Both these cross-sectional distributions are right-skewed. Some old mortgages have very high interest spreads, and mortgages have very high ADL thresholds if they have small remaining principal values or short remaining maturities. The skewness of ADL thresholds is illustrated in the top right panel of Figure 4.

23 There are also a few bonds with a 3% coupon that were issued in 2005 during a previous period of relatively low mortgage rates. Most of the underlying mortgages for these bonds have a relatively low maturity of 10 years, or in some cases 20 years. These mortgages account for only a very small fraction of our dataset.
rate (measured as the minimum average weekly mortgage rate during each quarter) as a solid line declining over the sample period from almost 5% to below 2%, with an uptick in 2011 and a pause in 2013 that explain the slower pace of refinancing in those years. The horizontal colored lines in this panel show the average ADL refinancing thresholds for mortgages with each coupon rate. The figure shows each of the three refinancing waves in the top panel, and illustrates the fact that each refinancing wave is dominated by mortgages for which the interest rate has already passed the ADL threshold. Thus, refinancing responds to incentives with a considerable delay.

3.3 Characteristics of refinancing households

Table 2 provides a comprehensive set of descriptive statistics for all households with a fixed-rate mortgage (averaging across all years of our sample), as well as a comparison of household characteristics between refinancing and non-refinancing households (measured in January of each year). Around 25% of all households consist of a single member, and 63% are married couples. The remainder are cohabiting couples. Around 40% of households have children living in the household. Table 2 also reports that in each year an average 1% of households got married and 4% experienced the birth of a child.

We have direct measures of financial literacy, defined as a degree in finance or economics, or professional training in finance, for at least one member of the household. Almost 5% of households are financially literate in this strong sense. A larger fraction of households, 13%, have members of their extended family (including non-resident parents, siblings, in-laws, or children) who are financially literate.

In our empirical analysis we use demeaned ranks of age, education, income, financial wealth, and housing wealth rather than the actual values of these variables. Table B3 in the appendix reports selected percentiles of the underlying distribution for all households, and

24 The average ADL thresholds are 5.7% for mortgages with 7% or greater coupons, 5.1% for 6% coupons, 4.2% for 5% coupons, 3.3% for 4% coupons, and 2.3% for 3.5% coupons.
separately for refinancing and non-refinancing households.

Columns 2 to 7 of Table 2 report differences in household characteristics between refinancing and non-refinancing households in the full sample (column 2), and each year from 2010 through 2014 (columns 3 through 7). A positive number means that the average characteristic is larger for refinancing households than for non-refinancing households. The differences between refinancers and non-refinancers are generally robust across years. For example, refinancing households are more likely to be married and less likely to be single, more likely to have children, to get married, and to experience the birth of a child. Our two measures of financial literacy are also higher for refinancing households.

Some important patterns emerge in the comparison of ranked variables across refinancers and non-refinancers. Refinancers are younger and better educated, and have higher income and housing wealth but lower financial wealth. We have found similar patterns when we estimate logit refinancing models that include all demographic variables simultaneously with refinancing incentives.

3.4 Errors of commission and omission

A simple way to use these estimates is to calculate the incidence of refinancing mistakes. These fall into two main categories. Borrowing the terminology of Agarwal, Rosen, and Yao (2016), “errors of commission” are refinancings that occur at an interest-rate saving below the ADL threshold, while “errors of omission” are failures to refinance that occur above the ADL threshold.

Table 3 reports the frequency of these two types of error. We define an error of commission as a refinancing with an interest rate saving below the ADL threshold less $k\%$, and an error of omission as a household-quarter where a refinancing does not occur even though the interest saving is above the ADL threshold plus $k\%$. The additional error cutoff level of k percentage points is introduced to take account of uncertainty in our estimates of the position.
of the ADL threshold. For a given k, households are classified as making errors of omission if they fail to refinance when incentives are greater than k, and errors of commission if they refinance with incentives less than $-k$, while incentives between $-k$ and k cannot generate either kind of error. In addition, we classify a refinancing as an error of commission only if the refinancing does not involve cash-out or maturity extension, since these alterations in mortgage terms could be sufficiently advantageous to justify refinancing even at a modest interest saving below the ADL threshold.

Table 3 shows that in our sample period, negative refinancing incentives are somewhat more common than positive refinancing incentives. In the case of $k = 0$, for example, there are 3.3 million of the former and 2.3 million of the latter. If we assume $k = 0.25$, there are 2.5 million of the former and 1.5 million of the latter. However, within the larger first group errors of commission are rare, occurring 1.1% of the time for error threshold $k = 0$ and 0.8% of the time for $k = 0.25$. As the error threshold increases, the frequency of errors of commission declines to 0.1% for $k = 2$. Within the smaller second group having positive refinancing incentives, errors of omission are extremely common, occurring over 90% of the time for all values of k.

While these numbers reflect a count of household-quarters rather than households, so that financing delays of a few quarters generate several errors of omission, the high incidence of errors of omission is nonetheless striking. It is consistent both with the refinancing pattern illustrated in Figure 1 and with the fact that we observe some large positive refinancing incentives in our dataset, which we could not do unless there had been errors of omission before the start of our sample period.

Table B4 in the appendix relates errors of commission and omission to demographic characteristics of households. Almost all the household characteristics shown in the table shift the refinancing probability in the same direction for both positive and negative incentives, thereby moving the probabilities of errors of commission and omission in opposite directions. Our structural model of refinancing behavior is designed to be consistent with this fact.
Table B5 in the appendix quantifies the overall costs of errors of omission in a naïve fashion similar to Campbell (2006). We calculate the realized excess interest paid on mortgages above the ADL threshold, net of refinancing costs. For each mortgage with an interest saving above the ADL threshold in each quarter, we calculate the difference between the interest paid on that mortgage, and the interest it would pay if it refinanced and rolled the fixed refinancing cost into the principal. We then divide by mortgage principal on these mortgages (in the top panel) or by total principal of all outstanding mortgages (in the bottom panel). The table shows realized excess interest of 1.5% of error-making households’ mortgage principal, if we assume a zero tolerance threshold k. As we increase k, we identify more serious errors and the costs rise, to 1.8% with $k = 0.25$ and 3.8% with an extreme $k = 2$. Relative to the total principal balance of the entire Danish mortgage market, these costs are 61 basis points with a zero k, 49 basis points with $k = 0.25$, and only 7 basis points if we go to the extreme $k = 2$. The decline in estimated costs relative to the entire market, as we increase k, is due to the fact that more extreme errors are less common, so while they have serious consequences for a few borrowers they are not as consequential in the Danish mortgage system as a whole.

This calculation suggests that errors of omission can have substantial costs, consistent with evidence reported in Miles (2004), Campbell (2006), Agarwal, Rosen, and Yao (2016), and Keys, Pope, and Pope (2016). A weakness of the calculation is that it does not follow households over time, so it can exaggerate the benefits of optimal refinancing in an environment of persistently declining interest rates. To see this, consider a household that fails to refinance an old mortgage despite having an incentive to do so that exceeds the ADL threshold by 50 basis points in one quarter and 100 basis points in the next. The static calculation counts an average cost of 75 basis points across the two quarters, ignoring the fact that if the household refinanced in the first quarter it would not be optimal to do so again in the second quarter, and therefore the household would only save 50 basis points per quarter from an optimal refinancing strategy.
To handle this issue correctly, in Table 4 we follow households over time, comparing the interest savings realized from households’ actual refinancing decisions with those that would have been realized by an optimal strategy of refinancing at the ADL threshold in each quarter. We call the difference between these two savings “missed” interest rate savings, a measure of the cost of errors of omission. The procedure in Table 4 allows households to refinance multiple times if it would have been optimal to do so. Savings are calculated as a percentage of mortgage principal, in DKK, and as a percentage of household income and then averaged across households.

As a percentage of mortgage principal, the top panel of Table 4 reports an average of 30 basis points of realized savings across all households in all years of our sample, and 39 basis points of missed savings implying 69 basis points of optimal savings. The 39 basis points of missed savings is substantial, albeit lower than the 61 basis points identified by the naïve static calculation discussed above. Missed savings average DKK 2,800 per year and the average ratio of missed savings to household income is 53 basis points. Missed savings are substantial in all years of our sample.

The bottom panel of Table 4 looks at households sorted into quintiles by age, education, income, financial wealth, and housing wealth. Older people, less educated people, and people with lower income and housing wealth realize smaller savings and miss greater savings as a percentage of their mortgage principal. People with greater financial wealth have slightly lower realized savings and considerably greater missed savings as a percentage of mortgage principal. Missed savings can be a substantial fraction of income for some groups, for example they average 78 basis points of income for households in the lowest education quintile and 95 basis points of income for households in the lowest income quintile.

Figure 2 summarizes these patterns graphically. The figure plots refinancing efficiency, defined as the ratio of realized savings to optimal savings in DKK, across quintiles of the distribution for age, education, income, financial wealth, and housing wealth. Refinancing efficiency declines with age from about 65% to about 45%, increases with education and
income from 40\% to over 60\% and with housing wealth from about 45\% to 60\%, and is fairly flat just below 60\% in relation to financial wealth. These estimates justify a concern that the mortgage refinancing decision is challenging for some people. We now estimate a structural refinancing model to gain greater insight about the nature of this challenge.

4 A Model of Inattention and Inertia

4.1 A mixture model of refinancing behavior

A. Refinancing with inertia

Consider a model of mortgage choice in which the probability that an attentive household \(i \) refines its fixed-rate mortgage at time \(t \) (the event \(y_{it} = 1 \)) depends on the household’s perceived refinancing incentive, its responsiveness to the incentive, and a standard logistic distributed stochastic choice error \(\epsilon_{it} \) following Luce (1959).

The refinancing probability of the household \(i \) at time \(t \) can be written as

\[
p_{it}(y_{it} = 1 \mid z_{it}; \varphi, \beta) = p(\exp(\beta)I^*(z_{it}; \varphi) + \epsilon_{it} > 0).
\]

(8)

Here \(z_{it} \) is a set of household and mortgage characteristics at time \(t \). The parameter vector \(\varphi \) interacts with those characteristics to determine the level of the refinancing incentive \(I^* \). The parameter \(\beta \) governs the household’s responsiveness to the incentive; for simplicity we do not allow this parameter to vary across households.

We model the refinancing incentive using the ADL model from the previous section, with one important change. The refinancing cost \(\kappa(m_{it}) \), which in the rational model depends only on the size of the mortgage \(m_{it} \), is now replaced by

\[
\kappa^*(m_{it}, z_{it}; \varphi) = \kappa(m_{it}) + \exp(\varphi' z_{it}).
\]

(9)
Household characteristics can increase the perceived refinancing cost. The modified refinancing incentive $I^*(z_{it}; \varphi)$ is given by equations (1)-(7), replacing (5) with (9).

This specification implies that the likelihood contribution of each household choice is:

$$\mathcal{L}_{it}(\varphi, \beta) = \Lambda \left([2y_{it} - 1][\exp(\beta I^*(z_{it}; \varphi))] \right),$$

(10)

where $\Lambda(.)$ is the inverse logistic function, $\Lambda(x) = \exp(x)/(1 + \exp(x))$. This model of household choice underlies the commonly used logit regression.

B. A mixture model of inattention

To capture the phenomenon of inattention, we use a mixture model. We assume that households can be in one of two states h, which we call “awake” and “asleep”. In each period a household is asleep with probability w_{it} and awake with probability $1 - w_{it}$, where $0 < w_{it} < 1$. Awake households refinance with probability as given above in equation (8). Asleep households refinance with zero probability, which can be captured numerically by altering (8) to have a large negative refinancing incentive.

The probability that a household is asleep in any period is modeled by

$$w_{it}(\chi) = \frac{\exp(\chi' z_{it})}{1 + \exp(\chi' z_{it})}.$$

(11)

The likelihood contribution for household i is a finite mixture of proportions:

$$\mathcal{L}_{it}(\chi, \varphi, \beta) = w_{it}(\chi) \mathcal{L}_{it}^{\text{asleep}}(\varphi, \beta) + (1 - w_{it}(\chi)) \mathcal{L}_{it}^{\text{awake}}(\varphi, \beta).$$

(12)

25Mixture models have a long history in statistics since Pearson (1894). A recent survey is presented in McLachlan and Peel (2000). Two current applications where mixture models are used to uncover decision rules are El-Gamal and Grether (1995) for Bayesian updating behavior, and Harrison and Rutström (2009) for models of decision-making under risk.
This leads to the household log likelihood function over our sample specified as:

$$\ln L(\chi, \varphi, \beta) = \sum_t \sum_i \ln (L_{it}(\chi, \varphi, \beta)).$$ \hspace{1cm} (13)

This framework models deviations from rational refinancing using two parameter vectors χ and φ and a scalar parameter β. The parameter vector χ captures the demographic determinants of attention, or the probability that a household is awake and responding to refinancing incentives in a given period. The parameter vector φ determines whether particular demographic characteristics are associated with a higher or lower psychological refinancing cost. Finally, the parameter β determines the responsiveness of households to the modified refinancing incentive. One interpretation of this parameter is that it reflects unobserved household-level shocks to the refinancing threshold level, uncorrelated across households and over time.

Intuitively, these parameters can be identified from a set of curves, each of which relates the refinancing frequency for a household with given demographic characteristics to the ADL refinancing incentive at a point in time. The model implies that each such curve has a logistic form, close to zero for highly negative incentives and positive for highly positive incentives. The height of the curve for highly positive incentives measures the probability that the given type of household is awake. The horizontal position of the point where the curve reaches half this height measures the increment to the ADL threshold implied by the psychological refinancing costs for this type of household. The slope of the curve at this point is governed by the parameter β, which for simplicity we do not allow to vary with household demographics.

Together, the model’s parameters tell us the relative importance of inattention and inertia in explaining failures to refinance. For example, if the parameters φ are estimated to be zero, then psychological refinancing costs are close to zero at the household level. In this case every household will eventually refinance whenever they face a positive ADL incentive to do so, implying that the problem is inattention. If on the other hand the parameters χ
governing attention imply that households have a probability close to one of being awake, then they will refinance whenever they reach their household-specific threshold, implying that inertia is the cause of refinancing failures. In the former case a modest decline in interest rates will eventually induce all households to refinance, whereas in the latter case a sizeable interest rate movement is required for some households to overcome refinancing inertia.

4.2 Estimating the model

A. Parameter estimates and their implications

Table 5 presents baseline estimates of the model laid out in the previous section. The table reports, for each demographic characteristic, the elements of the parameter vectors \(\chi \) and \(\varphi \) corresponding to that characteristic. The model includes dummies for the current quarter and the age of the mortgage, which are assumed to enter the vector \(\chi \) but not the other parameter vectors; in other words, time and mortgage age affect inattention but not inertia. The table also reports the estimate of the parameter \(\beta \).

To characterize the overall fit of this model, Table 5 reports a pseudo-\(R^2 \) statistic of 8.3%, calculated from the log likelihood ratio between the estimated model and a simple mixture model that includes only a constant probability that a household is awake. As an alternative way to understand the ability of the model to fit the data, in Figure 3 we show the sample distribution of incentives, together with the observed sample refinancing probability at each incentive level. As previously discussed, most incentives are negative but there is a substantial fraction of positive incentives. The observed refinancing probability increases strongly around the zero level, peaking at an incentive slightly above 1%. Very few observations have positive incentives greater than this, so the observed sample refinancing probability at high incentive levels is based on limited data and is correspondingly noisy.
Figure 3 also shows our model’s predicted refinancing probability and the estimated average probability that households in each incentive bin are awake. The model-predicted refinancing probability captures the overall cross-sectional pattern of refinancing quite well, although it underpredicts refinancings with extremely negative incentives and overpredicts refinancings with extremely positive refinancings. The probability that households are awake is somewhat noisy across bins, but averages about 15% for households with negative or low positive incentives, and declines to below 10% for households with high positive incentives. This pattern is the result of demographic variation in the population at each incentive level, as incentives do not directly enter our specification for attention.

We summarize the implications of our model estimates in a series of figures and in Table 6. Figure 4 shows the estimated cross-sectional distribution of refinancing costs and their implications for the interest savings that induces refinancing. The left side of the figure measures refinancing costs in DKK, while the right side reports the implications of these costs for the position of the interest threshold. The top left panel shows financial refinancing costs varying from a little over DKK 3,000 to the upper winsorization point just below DKK 10,000, with a mean of DKK 5,700. The top right panel reports the distribution of the corresponding ADL refinancing threshold, varying from about 50 to about 250 basis points, with a mean of 84 basis points and standard deviation of 30 basis points.

The middle left panel of Figure 4 shows the psychological refinancing costs in DKK, varying from almost zero to about DKK 30,000 with a mean just above DKK 10,000. Unsurprisingly, these costs lead to large increases in the threshold that triggers refinancing, as shown in the middle right panel of Figure 4. Threshold increases have a mean that is comparable to the ADL threshold, but a standard deviation that is more than 2 times greater as reported in Table 6. Finally, the bottom panels of Figure 4 show the distributions of total refinancing costs and the total threshold that triggers refinancing. The total threshold is shifted to the right and spread out by the psychological refinancing costs, with a mean of 165 basis points and a standard deviation of 93 basis points.
A striking result in Table 6 is that households’ ADL refinancing thresholds are almost uncorrelated with their psychological refinancing costs in DKK, but are strongly positively correlated with the increments to the refinancing threshold caused by those psychological refinancing costs. The correlation between the ADL threshold and the psychological refinancing cost is −0.02, but the correlation between the ADL threshold and the psychological increment to the refinancing threshold is 0.87. The reason for this pattern is that refinancing costs in DKK have a larger impact on the refinancing threshold for smaller, older mortgages. Households with these mortgages therefore tend to have both higher ADL thresholds and higher increases in the thresholds caused by their psychological refinancing costs.

Turning from inertia to inattention, the top panel of Figure 5 reports the cross-sectional distribution of the probability that households were asleep in a typical quarter of our sample (using sample average time effects and mortgage age effects). There is strong time-variation in this distribution as shown in the bottom panel of Figure 5 using a box-whisker plot. Quarters with low refinancing activity are fit by the model using time fixed effects that imply a high probability that all households are asleep in those quarters. Over the whole sample, the average probability that a household is asleep is 0.83, with a standard deviation of 0.13 (that includes both cross-sectional variation and variation over time for a given household).

Cross-sectionally, there is a strong negative correlation between inattention (the probability that a household is asleep) and inertia as measured in monetary units. The correlation is −0.69 in a typical quarter (using sample average time effects and mortgage age effects for the asleep probability), as reported in the bottom panel of Table 6 and illustrated in the top panel of Figure 6 using a scatter diagram. The reason, as we discuss in greater detail below, is that younger households with higher socioeconomic status are more likely to be awake but also have higher psychological refinancing costs in DKK. However, this correlation disappears when we measure inertia from the psychological increment to the refinancing threshold. Table 6 reports a correlation of only −0.01 between the probability that a household is asleep and the psychological threshold increment, a low correlation that is illustrated in the bottom panel of Figure 6. The discrepancy arises because young households with
high socioeconomic status tend to have larger mortgages whose refinancing thresholds are less sensitive to the level of refinancing costs in DKK.

The response coefficient β also has an important influence on the behavior of households in the model. Figure 7 illustrates the response of an awake household to variation in the refinancing incentive around zero (the point where the interest saving equals the modified threshold). The logistic curve relating the incentive to the refinancing probability becomes steeper as β increases, and for an infinite β would jump discontinuously from zero to one as the incentive crosses zero. Our estimate of β implies that the refinancing probability moves from about 25% to about 75% as the incentive moves from -50 to 50 basis points.

It is natural to ask whether the model estimated in Table 5 fits the data significantly better than restricted models that exclude one or more of the effects we have discussed. In Table 7 we address this issue by estimating a sequence of such restricted models, first setting all demographic coefficients to zero and allowing only mortgage age and current quarter effects on attention; then allowing free demographic effects on inertia but none on inattention; then free demographic effects on inattention but none on inertia; and finally imposing that demographic effects on inertia and inattention, as captured by the coefficient vectors φ and χ, are proportional to one another. The importance of allowing both types of demographic effects is indicated by the fact that all restricted models are strongly rejected statistically, and the various restricted models achieve only about 2/3 of the improvement in pseudo-R^2 statistics, over a model without demographic effects, that is achieved by our full unrestricted model.

B. Which households have inattention and inertia?

We now turn to a more detailed analysis of the mapping between Danish households’ demographic characteristics and their inattention and inertia. Inspection of the coefficients on dummy variables in Table 5 shows that some demographic characteristics make households more rational, by reducing both inattention and inertia. Financial literacy of the household or the family has this effect, as do life events such as getting married or having children.
On the other hand, there are also characteristics that move people closer to the rational benchmark in one dimension but further away in the other. For example, married couples have lower inattention but higher inertia than unmarried couples, while immigrants tend to have low inertia and high inattention.

Table 5 also reports the coefficients on ranked variables: age, education, income, financial wealth, and housing wealth. Previous literature has suggested that such variables may have nonlinear effects. For example, Agarwal, Driscoll, Gabaix, and Laibson (2009) report nonlinear effects of age on many financial decisions, with financial sophistication increasing among younger people as they gain experience, and decreasing among older people perhaps because of cognitive decline. We have tried two different ways of allowing for such nonlinearities, either using a piecewise linear function with a kink at the median (achieved by adding the absolute value of the demeaned rank to the regression), or using a quadratic function (by adding twice the squared demeaned rank, a normalization that allows direct comparison of the coefficients in the two specifications). We have found qualitatively similar results with either method and report the quadratic specification in the paper.

To understand the implied marginal effects of ranked variables on inattention and inertia, Figure 8 plots the variability in the estimated probability of being asleep, the estimated psychological costs of refinancing in DKK, and the estimated psychological increment to the refinancing threshold, as functions of the ranked variables. The figure is based on a two-step procedure in which the full model is used to estimate refinancing probability, and then the fitted refinancing probability is regressed on the demographic variables, including dummy variables, but excluding mortgage characteristics. This procedure implies that the effects of mortgage age and size covariation with demographic characteristics are attributed to those characteristics, rather than holding mortgage variables constant as demographic characteristics vary. It therefore conveys a more accurate impression of how implied behavior varies cross-sectionally in our model.
The top panel of Figure 8 shows that older households are more likely to be asleep, while households with higher education, income, financial wealth, and housing wealth are all less likely to be asleep. The middle panel of Figure 8 shows that middle-aged people have higher psychological refinancing costs in DKK than younger or older people. Households with higher education, income, financial wealth, and housing wealth all have somewhat higher psychological refinancing costs, helping to explain the negative correlation between inattention and inertia measured in DKK illustrated in Figure 6. However, the bottom panel of Figure 8 shows that the psychological increment to the refinancing threshold varies little with education, income, and housing wealth and increases strongly only with financial wealth. This is consistent with the fact that people with high financial wealth tend to have small mortgages, controlling for their other characteristics, so their DKK refinancing costs have a large impact on their refinancing threshold—while the opposite is true for people with high education, income, and housing wealth. The hump-shaped pattern with age is preserved in the bottom panel of Figure 8.

The results in Figure 8 suggest that some component of the psychological DKK refinancing costs estimated by our model may correspond to the value of time, which is plausibly higher for middle-aged people and for people with higher income and wealth. This interpretation might also explain the result shown in Table 5 that psychological DKK refinancing costs are higher for families with children present. However, as we have discussed the passthrough of this effect to mortgage refinancing behavior is muted by the inherent responsiveness of households with large mortgages to the refinancing incentives generated by low interest rates.
4.3 Applying the model

In this section we use our model to explore the effects on refinancing of various plausible alterations to the mortgage system in a hypothetical simulation. We consider a random sample of mortgage borrowers drawn from the Danish population at the start of our refinancing sample period in the first quarter of 2010. We lower the interest rate from the actual level by 172 basis points, a decline chosen to give 90% of the sample positive refinancing incentives relative to the ADL threshold. We fix the interest rate at this low level for three years, and track refinancing behavior over time in various alternative scenarios.

As a first exercise, we illustrate the effects of different components of our model on aggregate refinancing rates and the refinancing efficiency of different types of borrowers. The top panel of Figure 9 shows cumulative aggregate refinancing rates in a fully rational model with automatic refinancing at the ADL threshold, an inertial model with rational refinancing at the threshold augmented by our estimated psychological refinancing costs, an inattentive model that has rational refinancing at the ADL threshold only by households that are awake, and finally our full model with all components including a smooth refinancing response to incentives. Unsurprisingly the cumulative refinancing rate for the fully rational model reaches 90% in the first quarter and stays there, while the cumulative refinancing rate in the inertial model with augmented thresholds is lower at just above 60% but has the same time pattern. A model with only inattention has a smoothly rising cumulative refinancing rate, and our full model has the same time pattern at a lower level.

The second and third panels of Figure 9 show the refinancing rates of different groups of borrowers as a fraction of the rational refinancing rates for the same groups. This is closely related to the measure of refinancing efficiency illustrated in Figure 2, although for simplicity we do not calculate interest savings. We illustrate these refinancing efficiency measures for borrowers ranked by age in the second panel, and by income in the third panel. The measures can be calculated at any period of the simulation, and we choose to report results two years after the initial interest rate decline. The second panel shows that inertia
lowers the refinancing efficiency of middle-aged households relative to younger and older households, while inattention lowers the refinancing efficiency of older households. In our full model the inattention effect dominates, just as we saw in the data. The third panel shows that inertia lowers the refinancing efficiency of higher-income households, while inattention lowers the refinancing efficiency of poorer households which is the dominant effect in both the simulation and the data.

In Figure 10 we repeat the above analysis for three modifications of the Danish mortgage system designed specifically to improve the refinancing efficiency of older and poorer households. The first modification rebates the fixed component of the mortgage refinancing fee (DKK 3,000) and removes the caps on the fees to make the mortgage refinancing fee proportional. This eliminates the tendency of smaller mortgages (which are disproportionately held by older and poorer households) to have higher ADL thresholds. The second modification advertises refinancing opportunities in such a way that one-half of all households who were asleep are induced to pay attention. The third modification combines these two policies. The top panel of Figure 10 shows that reducing inattention is a much more powerful way to increase aggregate refinancing rates. This may not be surprising given the large size of the interest rate reduction we are considering, which is sufficient to give 90% of households an incentive to refinance relative to the ADL threshold. The second and third panels similarly show that reducing inattention is the best way to improve the refinancing efficiency of older and poorer households, although refinancing rebates do have a larger effect on poorer households as one would expect.

These findings are relevant for economic policymakers seeking to stimulate household consumption by lowering mortgage rates during a recession. In a fixed-rate mortgage system, lower mortgage rates relieve the budgets only of households that refinance their mortgages. Such budget relief is persistent, and therefore should stimulate consumption roughly one-for-one for households that have either no binding borrowing constraints (permanent income consumers) or fixed and binding borrowing constraints. To the extent that budget relief relaxes borrowing constraints, by permitting households to extract home equity or to increase
uncollateralized borrowing, the effect on consumption may initially exceed the effect on budget relief. Refinancing failures by poorer households limit the passthrough from declining mortgage rates to consumption, and particularly do so to the extent that poorer households are more likely to face borrowing constraints that can be relaxed by budget relief. Policies to mitigate such refinancing failures—by increasing attention or even refinancing mortgages automatically—therefore have the potential to increase the effectiveness of monetary policy stimulus during economic downturns.

5 Conclusion

In this paper we have documented sluggish mortgage refinancing behavior among Danish households. The Danish context is particularly advantageous for studying this type of household behavior because the Danish mortgage system places no restrictions on refinancing that does not involve cash-out, so households that pass up opportunities to substantially reduce their mortgage costs are not constrained, but are making mistakes in managing their finances. In addition, the Danish statistical system allows us to measure the demographic and economic characteristics of households in great detail.

We distinguish between inattention (a reduced probability of refinancing at any incentive) and inertia (an increase in the threshold that triggers refinancing, equivalent to the addition of psychological costs to the direct financial costs of refinancing). We find that older households and those with lower education, income, housing wealth, and financial wealth are all relatively more inattentive, whereas inertia is greatest for middle-aged households and those with high financial wealth. The cross-sectional variation in inertia is consistent with the view that psychological refinancing costs may in part capture the high value of time for certain households. Inattention is the primary reason why older households and those with lower socioeconomic status achieved low interest savings from refinancing during our sample period, relative to the savings achievable with an optimal refinancing strategy.
Both our methodology and our findings have relevance beyond the context of this paper. We believe that the mixture model we have used to estimate inattention is a promising econometric method for estimating the prevalence of behavioral biases in the population, and a useful alternative to the competing-risks proportional hazard framework of Deng, Quigley, and Van Order (2000) for modeling heterogeneous prepayment behavior. Our findings reinforce concerns that financial capabilities deteriorate late in life (Agarwal, Driscoll, Gabaix, and Laibson 2009) and that poorer households make worse financial decisions (Campbell 2006, Calvet, Campbell, and Sodini 2009b, Badarinza, Campbell, and Ramadorai 2016), contributing to inequality of wealth (Piketty 2014, Bach, Calvet, and Sodini 2015, Campbell 2016). Finally, our results imply that the effect of expansionary monetary policy on household consumption is weakened in economies with predominantly fixed-rate mortgages, not only by barriers to refinancing caused by low credit scores and house prices, but also by the inattention of many households to refinancing opportunities.
References

Andersen, Steffen, John Y. Campbell, Kasper Meisner Nielsen, and Tarun Ramadorai, 2017, “Appendix to Inattention and Inertia in Household Finance”, available online at authors’ websites.

37

Caplin, Andrew, Charles Freeman, and Joseph Tracy, 1997, “Collateral Damage: Refinancing Constraints and Regional Recessions”, *Journal of Money, Credit, and Banking* 29, 496–516.

Tracy, Joseph and Joshua Wright, 2012, “Payment Changes and Default Risk: The Impact of Refinancing on Expected Credit Losses”, Federal Reserve Bank of New York Staff Report No. 562.

Table 1: Characteristics of Danish Fixed Rate Mortgages

These statistics are calculated using mortgages taken by all households in Denmark with an unchanging number of members, and with a single fixed rate mortgage at the beginning of each of the years listed in the columns. The final column shows the statistics for all unique mortgages in the full sample. The rows show, in order, the number of observations at the beginning of each year; the fraction refinancing by the end of the year (i.e. the fraction of households who did not refinance for exogenous reasons such as moving house, and refinanced their pre-existing mortgage voluntarily); the fraction refinancing by the end of the year to fixed rate mortgages (FRM); the average principal remaining on these mortgages in millions of Danish Kroner (DKK), i.e., the outstanding principal; the average years remaining before these mortgages mature; and the average loan-to-value (LTV) ratio on these mortgages, calculated by the issuing mortgage banks.

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial # of observations</td>
<td>330,563</td>
<td>297,573</td>
<td>277,462</td>
<td>274,553</td>
<td>264,858</td>
<td>1,444,973</td>
</tr>
<tr>
<td>Fraction refinancing</td>
<td>0.226</td>
<td>0.086</td>
<td>0.253</td>
<td>0.156</td>
<td>0.193</td>
<td>0.171</td>
</tr>
<tr>
<td>FRM to FRM refinancing</td>
<td>0.429</td>
<td>0.342</td>
<td>0.692</td>
<td>0.769</td>
<td>0.849</td>
<td>0.617</td>
</tr>
<tr>
<td>Principal remaining (million DKK)</td>
<td>0.907</td>
<td>0.909</td>
<td>0.910</td>
<td>0.950</td>
<td>0.961</td>
<td>0.926</td>
</tr>
<tr>
<td>Years remaining on mortgage</td>
<td>23.382</td>
<td>22.923</td>
<td>22.498</td>
<td>23.031</td>
<td>22.828</td>
<td>22.951</td>
</tr>
<tr>
<td>Loan-to-value (LTV) ratio</td>
<td>0.569</td>
<td>0.547</td>
<td>0.604</td>
<td>0.624</td>
<td>0.638</td>
<td>0.594</td>
</tr>
</tbody>
</table>
Table 2: Differences in Household Characteristics: Refinancing and Non-Refinancing Households

The first column shows the average of each of the characteristics reported in the rows, pooled across our entire sample from 2010-2014. Columns 2 to 7 report the difference of means between refinancing and non-refinancing households, with a negative value indicating a lower mean for refinancing households. Differences are reported either unconditionally across the entire sample (Column “All”), or conditional on sub-periods. In the rows, “single” households (male or female) have only one adult living at the address, and represent ~13% of the entire sample. “Married” households have two legally bound adults (including registered partnership of same-sex couples). “Children in family” takes the value one if there are children in the household. “Immigrant” takes the value of one if there is an immigrant in the household. “No educational information” indicates an absence of data on this attribute. “Financially literate” takes the value of one if a member of the household has a degree in finance, or has had professional financial industry training. “Family financially literate” indicates when (non-household-resident) parents, siblings, in-laws, or children of the household are financially literate. “Getting married” refers to that change in marital status over the sample period. “Having children” indicates that households had a child within the last 12 months. “Rank of age” uses the age of the oldest person living in the household. “Rank of education” uses the best educated individual in the household. “Rank of income” uses the total income of the household. All ranks are computed each year across all households in the sample, and are normalized such that they take values between -0.5 and 0.5. ***, **, and * indicate coefficients that are significant at the one, five, and ten percent level by standard t-tests, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>All</th>
<th>2010***</th>
<th>2011***</th>
<th>2012***</th>
<th>2013***</th>
<th>2014***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single male household</td>
<td>0.130</td>
<td>-0.034***</td>
<td>-0.035***</td>
<td>-0.030***</td>
<td>-0.038***</td>
<td>-0.023***</td>
<td>-0.037***</td>
</tr>
<tr>
<td>Single female household</td>
<td>0.125</td>
<td>-0.024***</td>
<td>-0.030***</td>
<td>-0.026***</td>
<td>-0.022***</td>
<td>-0.013***</td>
<td>-0.027***</td>
</tr>
<tr>
<td>Married household</td>
<td>0.629</td>
<td>0.035***</td>
<td>0.017***</td>
<td>0.027***</td>
<td>0.040***</td>
<td>0.043***</td>
<td>0.052***</td>
</tr>
<tr>
<td>Children in family</td>
<td>0.402</td>
<td>0.082***</td>
<td>0.111***</td>
<td>0.079***</td>
<td>0.080***</td>
<td>0.037***</td>
<td>0.081***</td>
</tr>
<tr>
<td>Immigrant</td>
<td>0.077</td>
<td>-0.001***</td>
<td>0.000***</td>
<td>-0.001***</td>
<td>0.002***</td>
<td>0.006***</td>
<td>0.002***</td>
</tr>
<tr>
<td>No educational information</td>
<td>0.007</td>
<td>-0.003***</td>
<td>-0.003***</td>
<td>-0.012***</td>
<td>-0.002***</td>
<td>0.016***</td>
<td>-0.003***</td>
</tr>
<tr>
<td>Financially literate</td>
<td>0.046</td>
<td>0.011***</td>
<td>0.005***</td>
<td>0.011***</td>
<td>0.014***</td>
<td>0.033***</td>
<td>0.020***</td>
</tr>
<tr>
<td>Family financially literate</td>
<td>0.133</td>
<td>0.026***</td>
<td>0.018***</td>
<td>0.021***</td>
<td>0.030***</td>
<td>-0.019***</td>
<td>0.035***</td>
</tr>
<tr>
<td>Getting married</td>
<td>0.010</td>
<td>0.005***</td>
<td>0.010***</td>
<td>0.003***</td>
<td>0.005***</td>
<td>-0.001***</td>
<td>0.001***</td>
</tr>
<tr>
<td>Having children</td>
<td>0.043</td>
<td>0.020***</td>
<td>0.034***</td>
<td>0.025***</td>
<td>0.018***</td>
<td>0.004***</td>
<td>0.009***</td>
</tr>
<tr>
<td>Rank of age</td>
<td>0.000</td>
<td>-0.061***</td>
<td>-0.106***</td>
<td>-0.067***</td>
<td>-0.006***</td>
<td>-0.003***</td>
<td>-0.046***</td>
</tr>
<tr>
<td>Rank of education</td>
<td>0.003</td>
<td>0.039***</td>
<td>0.031***</td>
<td>0.024***</td>
<td>0.000***</td>
<td>0.047***</td>
<td>0.046***</td>
</tr>
<tr>
<td>Rank of income</td>
<td>0.002</td>
<td>0.059***</td>
<td>0.061***</td>
<td>0.049***</td>
<td>0.027***</td>
<td>0.051***</td>
<td>0.069***</td>
</tr>
<tr>
<td>Rank of financial wealth</td>
<td>-0.001</td>
<td>-0.055***</td>
<td>-0.101***</td>
<td>-0.076***</td>
<td>-0.100***</td>
<td>-0.004***</td>
<td>-0.027***</td>
</tr>
<tr>
<td>Rank of housing value</td>
<td>0.000</td>
<td>0.048***</td>
<td>0.027***</td>
<td>0.028***</td>
<td>0.011***</td>
<td>0.087***</td>
<td>0.058***</td>
</tr>
<tr>
<td>Region North Jutland</td>
<td>0.125</td>
<td>0.000***</td>
<td>0.004***</td>
<td>-0.007***</td>
<td>-0.006***</td>
<td>-0.042***</td>
<td>0.025***</td>
</tr>
<tr>
<td>Region Middle Jutland</td>
<td>0.238</td>
<td>0.018***</td>
<td>0.024***</td>
<td>0.018***</td>
<td>0.019***</td>
<td>0.002***</td>
<td>0.023***</td>
</tr>
<tr>
<td>Region Southern Denmark</td>
<td>0.228</td>
<td>-0.009***</td>
<td>-0.005***</td>
<td>0.018***</td>
<td>-0.015***</td>
<td>0.032***</td>
<td>0.011***</td>
</tr>
<tr>
<td>Region Zealand</td>
<td>0.186</td>
<td>-0.021***</td>
<td>-0.013***</td>
<td>-0.023***</td>
<td>-0.019***</td>
<td>-0.003***</td>
<td>0.009***</td>
</tr>
<tr>
<td>Region Copenhagen</td>
<td>0.222</td>
<td>0.014***</td>
<td>-0.010***</td>
<td>-0.003***</td>
<td>0.021***</td>
<td>0.078***</td>
<td>0.026***</td>
</tr>
<tr>
<td># of observations</td>
<td>5,648,323</td>
<td>5,648,323</td>
<td>1,224,654</td>
<td>1,245,845</td>
<td>1,178,468</td>
<td>1,075,044</td>
<td>1,093,582</td>
</tr>
</tbody>
</table>
Table 3: Errors of Commission and Omission

This table shows the incidence of errors of commission and omission, and the characteristics of households who commit errors of commission (refinancing when it is suboptimal), and errors of omission (not refinancing when it is optimal). We calculate the levels of incentives to engage in refinancing using the interest rate spread between the old and new mortgages less the Agarwal et al. (2013) formula which quantifies the option-value of waiting, and we use these computed incentives (plus cutoff levels to control for noise in estimation) to classify errors. Each column shows cost estimates corresponding to the cutoff levels shown in the column header. For example, a cutoff level of 0 (0.25) corresponds to the interest rate spread being exactly equal to the computed Agarwal et al. (2013) threshold level (exceeding the Agarwal et al. (2013) threshold level by 25 basis points). Errors of commission (omission) which correspond to each cutoff are computed as the percentage of household-quarters with incentives below (above) the negative of the cutoff (the cutoff), who refinance (do not refinance). Columns report the incidence of errors of commission and omission for cutoff levels ranging from 0 to 2 percentage points.

<table>
<thead>
<tr>
<th>Level of Cutoff</th>
<th>0</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td># Observations (incentives+cutoff<0)</td>
<td>3,334,598</td>
<td>2,451,889</td>
<td>1,887,602</td>
<td>1,306,298</td>
<td>734,150</td>
<td>228,936</td>
<td>89,297</td>
</tr>
<tr>
<td># Observations, refinancing</td>
<td>57,974</td>
<td>33,885</td>
<td>24,370</td>
<td>12,701</td>
<td>5,934</td>
<td>2,142</td>
<td>891</td>
</tr>
<tr>
<td># Observations, cash out or extend maturity</td>
<td>22,182</td>
<td>14,174</td>
<td>10,401</td>
<td>7,090</td>
<td>3,897</td>
<td>1,503</td>
<td>783</td>
</tr>
<tr>
<td># Observations, errors of commission</td>
<td>35,792</td>
<td>19,711</td>
<td>13,969</td>
<td>5,611</td>
<td>2,037</td>
<td>639</td>
<td>108</td>
</tr>
<tr>
<td>Fraction with error of commission</td>
<td>0.011</td>
<td>0.008</td>
<td>0.007</td>
<td>0.004</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td># Observations (incentives-cutoff>=0)</td>
<td>2,313,725</td>
<td>1,573,255</td>
<td>1,092,938</td>
<td>796,624</td>
<td>524,195</td>
<td>228,739</td>
<td>104,944</td>
</tr>
<tr>
<td># Observations, errors of omission</td>
<td>2,124,652</td>
<td>1,422,154</td>
<td>993,601</td>
<td>721,610</td>
<td>473,614</td>
<td>215,981</td>
<td>99,152</td>
</tr>
<tr>
<td>Fraction with error of omission</td>
<td>0.918</td>
<td>0.904</td>
<td>0.909</td>
<td>0.906</td>
<td>0.904</td>
<td>0.944</td>
<td>0.945</td>
</tr>
</tbody>
</table>
Table 4: Counterfactual Interest Rate Saving from Refinancing

This table estimates the counterfactual saving that would prevail if households refinanced optimally, and compares this estimate to the actual saving arising from household refinancing. Counterfactual savings are calculated as the saved interest rate net of the annuitized cost of refinancing, assuming the household refinances as soon as it has positive incentives to refinance. In these counterfactual calculations, we assume that the coupon on the new mortgage is the closest available coupon below the current market yield. For instance, if the market yield is 4.2 percent, we assume households refinance into a mortgage bearing a coupon of 4 percent. In these counterfactuals, households can refinance as many times as their incentives turn positive. In cases in which this implies that households refinance multiple times, we simply accumulate the savings from the multiple rounds of refinancing. Actual savings from refinancing are calculated as the saved interest rate arising from the refinancing activity that the household actually undertook, net of the annuitized cost of refinancing. Missed savings is the difference between the counterfactual savings arising from households refinancing whenever their incentives to do so turn positive, and the actual savings arising from refinancing. The table columns capture units in which savings are measured, namely, percentage point interest rate reductions, value in 1,000 DKK, and savings as a percentage of income. The top panel reports these statistics by year, and the following panels report these statistics for quintiles of the population sorted by age, education, income, financial wealth, and housing wealth, with 1 representing the bottom and 5 the top group in each distribution – with the corresponding quintile means in the extreme right hand column.

<table>
<thead>
<tr>
<th>%</th>
<th>1,000 DKK</th>
<th>% of income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>Missed</td>
<td>Actual</td>
</tr>
</tbody>
</table>

Actual vs. missed interest rate savings from refinancing by year

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Missed</th>
<th>Actual</th>
<th>Missed</th>
<th>Actual</th>
<th>Missed</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.30</td>
<td>0.39</td>
<td>3.2</td>
<td>2.6</td>
<td>0.60</td>
<td>0.53</td>
<td>1,444,973</td>
</tr>
<tr>
<td>2010</td>
<td>0.09</td>
<td>0.36</td>
<td>1.1</td>
<td>3.0</td>
<td>0.18</td>
<td>0.53</td>
<td>330,563</td>
</tr>
<tr>
<td>2011</td>
<td>0.15</td>
<td>0.40</td>
<td>1.9</td>
<td>3.1</td>
<td>0.31</td>
<td>0.57</td>
<td>297,573</td>
</tr>
<tr>
<td>2012</td>
<td>0.34</td>
<td>0.37</td>
<td>3.8</td>
<td>2.0</td>
<td>0.72</td>
<td>0.48</td>
<td>277,462</td>
</tr>
<tr>
<td>2013</td>
<td>0.43</td>
<td>0.33</td>
<td>4.7</td>
<td>1.8</td>
<td>0.88</td>
<td>0.42</td>
<td>274,553</td>
</tr>
<tr>
<td>2014</td>
<td>0.53</td>
<td>0.49</td>
<td>5.7</td>
<td>2.9</td>
<td>1.06</td>
<td>0.67</td>
<td>264,858</td>
</tr>
</tbody>
</table>

Actual vs. missed interest rate savings from refinancing by age

<table>
<thead>
<tr>
<th>Quintiles</th>
<th>Actual</th>
<th>Missed</th>
<th>Actual</th>
<th>Missed</th>
<th>Actual</th>
<th>Missed</th>
<th>Average char.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.34</td>
<td>0.26</td>
<td>4.5</td>
<td>2.5</td>
<td>0.74</td>
<td>0.45</td>
<td>33.8</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
<td>0.35</td>
<td>4.3</td>
<td>3.0</td>
<td>0.66</td>
<td>0.49</td>
<td>44.1</td>
</tr>
<tr>
<td>3</td>
<td>0.30</td>
<td>0.42</td>
<td>3.3</td>
<td>2.8</td>
<td>0.56</td>
<td>0.49</td>
<td>55.6</td>
</tr>
<tr>
<td>4</td>
<td>0.28</td>
<td>0.42</td>
<td>2.6</td>
<td>2.4</td>
<td>0.52</td>
<td>0.50</td>
<td>61.1</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>0.49</td>
<td>2.0</td>
<td>2.3</td>
<td>0.57</td>
<td>0.74</td>
<td>72.7</td>
</tr>
</tbody>
</table>

Actual vs. missed interest rate savings from refinancing by education

<table>
<thead>
<tr>
<th>Quintiles</th>
<th>Actual</th>
<th>Missed</th>
<th>Actual</th>
<th>Missed</th>
<th>Actual</th>
<th>Missed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.24</td>
<td>0.54</td>
<td>1.8</td>
<td>2.4</td>
<td>0.55</td>
<td>0.78</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>0.29</td>
<td>0.41</td>
<td>2.9</td>
<td>2.6</td>
<td>0.60</td>
<td>0.56</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>0.41</td>
<td>0.47</td>
<td>4.3</td>
<td>2.7</td>
<td>0.88</td>
<td>0.69</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>0.31</td>
<td>0.34</td>
<td>3.7</td>
<td>2.6</td>
<td>0.61</td>
<td>0.44</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>0.34</td>
<td>0.28</td>
<td>5.6</td>
<td>2.9</td>
<td>0.68</td>
<td>0.37</td>
<td>18</td>
</tr>
</tbody>
</table>
Actual vs. missed interest rate savings from refinancing by income

<table>
<thead>
<tr>
<th></th>
<th>0.22</th>
<th>0.53</th>
<th>1.5</th>
<th>2.3</th>
<th>0.69</th>
<th>0.95</th>
<th>234.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.28</td>
<td>0.42</td>
<td>2.3</td>
<td>2.4</td>
<td>0.60</td>
<td>0.60</td>
<td>399.7</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
<td>0.37</td>
<td>3.2</td>
<td>2.5</td>
<td>0.60</td>
<td>0.44</td>
<td>558.8</td>
</tr>
<tr>
<td>3</td>
<td>0.34</td>
<td>0.33</td>
<td>4.1</td>
<td>2.7</td>
<td>0.60</td>
<td>0.37</td>
<td>700.3</td>
</tr>
<tr>
<td>4</td>
<td>0.34</td>
<td>0.30</td>
<td>5.4</td>
<td>3.1</td>
<td>0.57</td>
<td>0.31</td>
<td>1,033.3</td>
</tr>
</tbody>
</table>

Actual vs. missed interest rate savings from refinancing by financial wealth

<table>
<thead>
<tr>
<th></th>
<th>0.32</th>
<th>0.33</th>
<th>4.1</th>
<th>3.0</th>
<th>0.68</th>
<th>0.53</th>
<th>-620.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.31</td>
<td>0.36</td>
<td>3.4</td>
<td>2.6</td>
<td>0.65</td>
<td>0.55</td>
<td>-138.5</td>
</tr>
<tr>
<td>2</td>
<td>0.29</td>
<td>0.43</td>
<td>2.9</td>
<td>2.5</td>
<td>0.64</td>
<td>0.62</td>
<td>30.5</td>
</tr>
<tr>
<td>3</td>
<td>0.30</td>
<td>0.40</td>
<td>3.2</td>
<td>2.4</td>
<td>0.59</td>
<td>0.50</td>
<td>187.7</td>
</tr>
<tr>
<td>4</td>
<td>0.26</td>
<td>0.42</td>
<td>3.0</td>
<td>2.5</td>
<td>0.50</td>
<td>0.48</td>
<td>901.3</td>
</tr>
</tbody>
</table>

Actual vs. missed interest rate savings from refinancing by housing wealth

<table>
<thead>
<tr>
<th></th>
<th>0.25</th>
<th>0.49</th>
<th>1.7</th>
<th>1.9</th>
<th>0.44</th>
<th>0.56</th>
<th>645.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30</td>
<td>0.41</td>
<td>2.6</td>
<td>2.4</td>
<td>0.57</td>
<td>0.56</td>
<td>1,031.7</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
<td>0.38</td>
<td>3.4</td>
<td>2.6</td>
<td>0.66</td>
<td>0.54</td>
<td>1,380.8</td>
</tr>
<tr>
<td>3</td>
<td>0.32</td>
<td>0.34</td>
<td>4.0</td>
<td>2.9</td>
<td>0.69</td>
<td>0.53</td>
<td>1,878.6</td>
</tr>
<tr>
<td>4</td>
<td>0.31</td>
<td>0.32</td>
<td>5.0</td>
<td>3.2</td>
<td>0.61</td>
<td>0.49</td>
<td>3,418.2</td>
</tr>
</tbody>
</table>
Table 5: Baseline Model

In this specification, the dependent variable takes the value of 1 for a refinancing in a given quarter, and 0 otherwise. We estimate this specification using all households in Denmark with an unchanging number of household members, with a single fixed rate mortgage in the beginning of each year from 2010-2014. Each column reflects the estimated coefficients of our model of refinancing: \(\chi \) is the probability that a household is asleep and does not respond to refinancing incentives as a function of demographic characteristics. \(\phi \) captures the level of psychological refinancing costs (i.e., costs = \(\exp(\phi) \)) as a function of demographic characteristics, and \(\exp(\beta) \) captures the responsiveness to the incentives. The coefficients include non-linear transformations, \(f(x) \), of all the ranked control variables in addition to their levels, where \(f(x) = \sqrt{2}x^2 \). Pseudo R\(^2\) is calculated using the formula \(R^2 = 1- \frac{L_1}{L_0} \), where \(L_1 \) is the log likelihood from the given model and \(L_0 \) is the log likelihood from a model which only allows for a constant probability of being asleep. ***, **, and * indicate coefficients that are significant at the one, five, and ten percent level, respectively, using standard errors clustered at the level of households.

<table>
<thead>
<tr>
<th></th>
<th>(\chi)</th>
<th>(\phi)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.877**</td>
<td>2.502***</td>
<td>0.641***</td>
</tr>
<tr>
<td>Single male household</td>
<td>-0.032</td>
<td>-0.009</td>
<td></td>
</tr>
<tr>
<td>Single female household</td>
<td>-0.115***</td>
<td>-0.041</td>
<td></td>
</tr>
<tr>
<td>Married household</td>
<td>-0.029**</td>
<td>0.070***</td>
<td></td>
</tr>
<tr>
<td>Children in family</td>
<td>0.098***</td>
<td>0.088***</td>
<td></td>
</tr>
<tr>
<td>Immigrant</td>
<td>0.176***</td>
<td>-0.101***</td>
<td></td>
</tr>
<tr>
<td>No education information</td>
<td>0.192***</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>Financially literate</td>
<td>-0.012</td>
<td>-0.155</td>
<td></td>
</tr>
<tr>
<td>Family financially literate</td>
<td>-0.084***</td>
<td>-0.009</td>
<td></td>
</tr>
<tr>
<td>Getting married</td>
<td>-0.054</td>
<td>-0.249***</td>
<td></td>
</tr>
<tr>
<td>Having children</td>
<td>-0.112***</td>
<td>-0.068***</td>
<td></td>
</tr>
<tr>
<td>Region of Northern Jutland</td>
<td>-0.368***</td>
<td>0.161***</td>
<td></td>
</tr>
<tr>
<td>Region of Middle Jutland</td>
<td>-0.326***</td>
<td>0.114***</td>
<td></td>
</tr>
<tr>
<td>Region of Southern Denmark</td>
<td>-0.176</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>Region of Zealand</td>
<td>0.074***</td>
<td>0.052**</td>
<td></td>
</tr>
<tr>
<td>Demeaned rank of: Age</td>
<td>0.703***</td>
<td>-0.246***</td>
<td></td>
</tr>
<tr>
<td>Length of education</td>
<td>-0.257***</td>
<td>0.070***</td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>-0.741***</td>
<td>1.034***</td>
<td></td>
</tr>
<tr>
<td>Financial wealth</td>
<td>-0.280</td>
<td>1.021</td>
<td></td>
</tr>
<tr>
<td>Housing wealth</td>
<td>-0.762***</td>
<td>0.646</td>
<td></td>
</tr>
<tr>
<td>Non-linear transformation (f(x)), (x) is the demeaned rank of: Age</td>
<td>-0.170***</td>
<td>-1.174***</td>
<td></td>
</tr>
<tr>
<td>Length of education</td>
<td>0.074**</td>
<td>0.322***</td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>0.599***</td>
<td>-0.514***</td>
<td></td>
</tr>
<tr>
<td>Financial wealth</td>
<td>0.070**</td>
<td>-0.794***</td>
<td></td>
</tr>
<tr>
<td>Housing wealth</td>
<td>0.373***</td>
<td>-0.667***</td>
<td></td>
</tr>
</tbody>
</table>

Current quarter dummies Yes
Mortgage age dummies Yes

Pseudo R\(^2\) 0.083
Log likelihood -864,175
Observations 5,648,323
Table 6: Summary Statistics of Estimated Model Parameters

This table shows summary statistics of the estimated model parameters using demographic and mortgage information across the entire sample period. In the top panel, we show the mean, median, and standard deviation of the estimated probability of being asleep; the estimated psychological costs in 1,000 DKK; the calculated optimal Agarwal et al. (2013) refinancing threshold level in basis points (ADL); the estimated increment to the threshold arising from psychological costs; and the total threshold which is the sum of the previous two components. In the bottom panel, we show the correlation matrix of these different parameters from the model, assuming a sample average of current quarter and mortgage age dummies for the asleep probability.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Median</th>
<th>Standard Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asleep probability</td>
<td>0.83</td>
<td>0.87</td>
<td>0.13</td>
</tr>
<tr>
<td>Psychological costs in 1,000 DKK</td>
<td>10.23</td>
<td>8.70</td>
<td>5.99</td>
</tr>
<tr>
<td>Optimal ADL refinancing threshold</td>
<td>83.64</td>
<td>75.30</td>
<td>30.22</td>
</tr>
<tr>
<td>Psychological increment to threshold</td>
<td>80.95</td>
<td>61.78</td>
<td>71.93</td>
</tr>
<tr>
<td>Total threshold</td>
<td>164.59</td>
<td>139.77</td>
<td>93.42</td>
</tr>
</tbody>
</table>

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Asleep probability</th>
<th>Psychological costs in 1,000 DKK</th>
<th>Optimal ADL threshold</th>
<th>Psychological increment to threshold</th>
<th>Total threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asleep probability</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological costs in 1,000 DKK</td>
<td>-0.691</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal ADL refinancing threshold</td>
<td>0.026</td>
<td>-0.019</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological increment to threshold</td>
<td>-0.006</td>
<td>0.022</td>
<td>0.865</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Total threshold</td>
<td>0.002</td>
<td>0.013</td>
<td>0.920</td>
<td>0.993</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Table 7: Restricted Models

In these specifications, the dependent variable takes the value of 1 for a refinancing in a given quarter, and 0 otherwise. We estimate these specifications using all households in Denmark with an unchanging number of household members, with a single fixed rate mortgage in any year from 2010 to 2014. Specification (1) uses our baseline model presented in Table 5, in which demographics affect φ and χ. Specification (2) estimates a simple model in which demographics do not affect φ and χ, but the model does include dummies for the current quarter, as well as dummies for mortgage age in years. In specification 3 (4) we only allow demographics to affect φ (χ). In specification 5, demographics affect both χ and φ, but in a manner which is constrained to be proportional. As before, these models include non-linear transformations, f(x), of several of the rank control variables in addition to their levels, where f(x) = \sqrt{2}x^2. Pseudo R^2 is calculated using the formula R^2 = 1 - L_1/L_0, where L_1 is the log likelihood from the given model and L_0 is the log likelihood from a model which only allows for a constant probability of being awake. The Log Likelihood reduction is calculated in each case as the difference between the log likelihood of the baseline model in row 1, and the log likelihood of the model corresponding to each row. ***, **, and * indicate coefficients that are significant at the one, five, and ten percent level, respectively, using standard errors clustered at the level of households.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Pseudo R2</th>
<th>Log likelihood reduction</th>
<th>χ</th>
<th>φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.083</td>
<td></td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>(2)</td>
<td>0.068</td>
<td>-13608</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>(3)</td>
<td>0.078</td>
<td>-4947</td>
<td>None</td>
<td>Free</td>
</tr>
<tr>
<td>(4)</td>
<td>0.077</td>
<td>-5551</td>
<td>Free</td>
<td>None</td>
</tr>
<tr>
<td>(5)</td>
<td>0.078</td>
<td>-4598</td>
<td>Proportional</td>
<td>Proportional</td>
</tr>
</tbody>
</table>
Figure 1: Refinancing Activity by Pre-existing Mortgage Coupon Rates

This figure illustrates the history of refinancing activity in our sample of Danish fixed-rate mortgages. In the top plot, the bars represent the number of refinancing households in each quarter. The bars are shaded according to the coupon rate on the old mortgage from which households refinance. In the bottom plot, we show the evolution of the quarterly Danish mortgage interest rate, as it moves through the average refinancing threshold for each group of coupon rate mortgages. For example, the very top lightest shaded line in the bottom plot shows the average interest rate refinancing threshold for the group of mortgages that bear coupon rates of 7%, i.e., the point at which the current interest rate needs to be, on average, to optimally justify refinancing for this group of mortgage holders.
Figure 2: Refinancing Efficiency

This figure plots the average refinancing efficiency, calculated as the ratio of actual savings to counterfactual savings (given optimal refinancing, see Table 4), as a function of the ranked variables of age, education, income, financial wealth and housing wealth.
Figure 3: Refinancing, Incentives and Model Implied Refinancing Probabilities.

This figure plots refinancing probabilities from the baseline model presented in Table 5, as a function of refinancing incentives, alongside the number of observations at each level of incentives. The bars in this figure show the number of household-quarters (scale on the left vertical axis) and the lines show the fraction of these household-quarters that refinance (scale on the right vertical axis) at each level of refinancing incentives shown on the horizontal axis. The bars are 20-basis-point incentive intervals centered at the points on the horizontal axis. The solid line shows the actual refinancing probability observed in the data, the long-dashed line shows the model-predicted refinancing probability, and the short-dashed line shows the fraction of households that the model estimates are not asleep (i.e., awake) in each period.
Figure 4: Model Characteristics

These figures summarize the costs of refinancing estimated from the baseline model presented in Table 5 over the entire sample period. The three plots on the left show the costs in 1,000 DKK, while the three plots on the right show these costs in the form of the implied interest rate threshold in basis points that they translate into using the ADL (2013) function. Descending vertically, the first row shows the pure financial costs of refinancing, which are based on mortgage size. The second row shows the estimated psychological costs of refinancing, while the third row is the total costs, which sum the two rows above it.
Figure 5: Model Implied Asleep Probability

This figure shows the model implied probability of households being asleep estimated using the baseline model presented in Table 5. The top panel shows a histogram of distribution of the estimated asleep probability across households, computed using a representative quarter, i.e., inputting the average mortgage age effect and average current quarter time effect estimated in the data. The bottom panel shows a box plot of the model implied estimated asleep probability for each quarter of our data, i.e., inputting the time effect and mortgage age effect for each quarter listed on the vertical axis.
Figure 6: Proportionality of Coefficient Estimates TBU

This figure plots household-level estimated psychological costs against the estimated probability of a household being asleep from the model in Table 5. The top panel plots these costs in 1,000 DKK, while the bottom figure plots the additional psychological cost increment to the interest-rate threshold to be surmounted to induce a household to refinance. Fitted coefficients are based on actual household demographic characteristics from a random 0.1% sample of all observations in our dataset. The solid line fits a univariate regression line (and associated standard error bands) to the cloud of points.
Figure 7: Refinancing Probability

This figure shows the implied probability of refinancing, conditional on a household not being asleep, from the baseline model presented in Table 5 as a function of the incentives to refinance measured in basis points on the horizontal axis.
Figure 8: Marginal Effects of Ranked Variables

This figure shows the marginal change in the probability of being asleep, the estimated psychological costs of refinancing measured in 1,000 DKK, and the additional psychological cost increment to the interest-rate threshold to be surmounted to induce a household to refinance as a function of selected ranked variables: age, education, income, financial wealth, and housing wealth. To plot these marginal effects, we use the household-level fitted values of the baseline model presented in Table 5.
Figure 9: Model Experiments

These figures consider the effect of various features of the model in response to an interest rate cut in which 90% of Danish households have a refinancing incentive that exceeds their ADL (2013) threshold. We consider households that are fully rational, i.e. not asleep and with zero psych costs; households that are allowed to have psych costs; households that are allowed to be asleep; and our baseline model in which households can both have psych costs and be asleep. The top panel of this figure shows fraction of households that refinance in response to this policy, and the second (third) the fraction of households that refinance 8 quarters after the interest rate cut at different points in the age (income) distribution.
Figure 10: Policy Experiments

These figures consider different policies to induce household refinancing in response to an interest rate cut in which 90% of Danish households have a refinancing incentive exceeding their ADL (2013) threshold: a rational policy in which mortgages automatically refinance when the interest rate saving exceeds the ADL threshold; a policy that “wakes up” households, cutting the asleep probability in half from its initial level; a policy that rebates all fixed fees incurred by households; a policy that combines “waking up” with the rebate; and a “do nothing policy” in which households refinance according to our baseline model. The top panel of this figure shows the fraction of households that refinance under each policy, and the second (third) the fraction of households that refinance 8 quarters after the interest rate cut at different points in the age (income) distribution.