Asset Markets and Monetary Policy

Eckhard Platen
School of Finance and Economics and School of Mathematical Sciences
University of Technology, Sydney

joint research with Willy Semmler

Introduction

- financial market and economic activity strongly interact

- appropriate monetary policy?

- Taylor rule Taylor (1993)
 respond to inflation and output gap

 Svensson (1997, 1999)
 Woodford (2003)
• Impact of asset price movements?

• Bernanke, Gertler & Gilchrist (1999)
 net worth moves procyclically
 can magnify disturbances

• Cecchetti et al. (2000)
 beneficial effects when responding to asset prices
 exogenous bubbles or non-fundamental asset price
• Dupor (2005)
capital valuations are impacted by asset price bubbles
distortions in aggregate demand

• Beaudry & Portier (2004)
asset price bubbles resulting from asset price booms

• Christiano, Motto & Rostagno (2005)
bubbles arise due to misperceived technology shocks
Coenen & Wieland (2004)

Eggertsson & Woodford (2003)

Japanese deflationary experience:

asset prices and product prices decline
and inflation rates approach zero
• **quantitative easing**

 provide private economy with liquidity
 purchasing “bad assets”
 reviving the economy through government spending
• current crises
 triggered by subprime crisis
 global financial market meltdown
 banking crisis
 downturn in real economic activity
 partial deflation

monetary policy and asset markets:
U.S.: zero interest rates
quantitative easing
• **dynamic portfolio approach**

 reveals transmission mechanism and limitations of monetary policy

 static: Tobin (1969, 1980)
 Frankel (1995)

 dynamic: Campbell & Viceira (2002)

 constant variances
 constant expected risk premia
 constant consumption-wealth ratio
 risk neutral assumptions
Benchmark Approach

Pl. & Heath (2006)

distinction between nominal and real assets
real world martingales
general stochastic processes

⇒

interest rate rule
inflation rate rule
- interest rate rule

\[i_t = \left(a_t - \gamma \sigma_t^2 (1 - |1 - \alpha_t|) \right)^+ \]

- \(a_t \): expected return
- \(\gamma \): risk aversion
- \(\alpha_t \): fraction of wealth invested in the equity market
- \(\sigma_t \): volatility of the equity index
• inflation rate rule

\[\pi_t = a_t - c_t + \frac{\gamma \sigma_t^2}{2} \alpha_t (\alpha_t - 1) \]

\(c_t \) consumption rate
Asset Market Dynamics

Merton (1992)
Cochrane (2001)
Campbell & Viceira (2002)

• savings account

\[\beta_t = \exp \left\{ \int_0^t i_s \, ds \right\} \]

\(i_t \) nominal interest rate

• risky asset

\[dP_t = P_t \left(a_t \, dt + \sigma_t \, dz_t \right) \]

\(z_t \) standard Wiener process
\(\sigma_t > 0 \)
• consumer price index

\[I_t = \exp \left\{ \int_0^t \pi_s \, ds \right\} \]

\(\pi_t \) inflation rate

• consumption rate

\[c_t = c_0 \exp \left\{ \int_0^t e_s \, ds \right\} \]

\(c_0 > 0 \)

\(e_t \) growth rate of consumption rate
Budget equation

total wealth

$$dW_t = W_t ((1 - \alpha_t) i_t \, dt - c_t \, dt + \alpha_t (a_t \, dt + \sigma_t \, dz_t))$$

\(\alpha_t\) fraction in the risky asset index \(P_t\)

\(W_0 > 0\).
Maximization of aggregate consumed real wealth per unit of time:

\[
\frac{c_s W_s}{I_s}
\]

- objective

\[
\max_{\mathcal{W}} E_t \left(U \left(\frac{c_s W_s}{I_s} \right) \right)
\]

for all \(0 \leq t < s < \infty\)

real world expectation

\(U'(\cdot) > 0\) \hspace{1cm} \(U''(\cdot) < 0\)
Example:

- power utility

\[U(x) = \frac{x^{(1-\gamma)}}{1 - \gamma} \]

\(\gamma > 0, \gamma \neq 1, \)
\(\gamma \rightarrow 1 \) logarithmic utility

no time horizon

consumption rate \(c_t \) given
Market Dynamics

- **martingale approach**
 - assumes risk neutral martingales
 - Cox & Huang (1989)
 - Campbell & Viceira (2002)
 - trends in real world dynamics are ignored

- **benchmark approach**
 - assumes real world martingales
 - Pl. & Heath (2006)
 - no equivalent risk neutral probability measure needed
 - trends in real world dynamics are taken into account
Figure 1: Radon-Nikodym derivative and total mass of putative risk neutral measure.
Optimal Wealth Dynamics

- benchmark as best performing strictly positive portfolio

numeraire portfolio S^*_t

$$dS^*_t = S^*_t (i_t dt + \theta_t (\theta_t dt + dz_t))$$

market price of risk

$$\theta_t = \frac{a_t - i_t}{\sigma_t}$$

growth optimal portfolio
Kelly (1956), Merton (1973)
stochastic discount factor

\[M_t = \frac{1}{S_t^*} \]

similar as Cochrane (2001) but more general

\[dM_t = -\theta_t \, M_t \, dz_t - i_t \, M_t \, dt \]

\[M_0 = 1 \]
• accumulated total wealth $W_t G_t$

$$G_t = \exp \left\{ \int_0^t c_s \, ds \right\}$$

benchmarked accumulated total wealth

$$\tilde{W}_t = \frac{W_t G_t}{S^*_t}$$

$$d\tilde{W}_t = \tilde{W}_t (\alpha_t \sigma_t - \theta_t) \, dz_t$$

local martingale, supermartingale

Pl. & Heath (2006)
• Law of the minimal price

Pl. (2008)

⇒

real world pricing formula

\[U_t = S_t^* E_t \left(\frac{H_s}{S_s^*} \right) \]
• assume martingale property

\[E_t(W_s M_s G_s) = M_t W_t G_t \]

for all \(0 \leq t \leq s < \infty \)

martingale is most cost efficient

nonnegative supermartingale
constraint optimization problem

\[v_t = \max_{\mathcal{W}} E_t \left(U \left(\frac{c_s W_s}{I_s} \right) \right) - \ell_t E_t \left(\tilde{W}_s - \tilde{W}_t \right) \]

\[= \max_{\mathcal{W}} E_t \left(U \left(\frac{c_s W_s}{I_s} \right) \right) - \ell_t \left(\frac{W_s G_s}{S^*_s} - \frac{W_t G_t}{S^*_t} \right) \]

for \(0 \leq t < s < \infty \)

\(\ell_t \) Lagrange multiplier

\(\tilde{W}_t \) martingale

only real world probability used
• candidate for optimal wealth process

\[
\left[U\left(\frac{c_s W_s}{I_s} \right) - \ell_t \left(\frac{W_s G_s}{S_s^*} - \frac{W_t G_t}{S_t^*} \right) \right] \rightarrow \max
\]

\[
U'\left(\frac{c_s W_s}{I_s} \right) \frac{c_s}{I_s} - \ell_t \frac{G_s}{S_s^*} = 0
\]

\[
\frac{c_s W_s}{I_s} = U'^{-1} \left(U' \left(\frac{c_s W_s}{I_s} \right) \right) = U'^{-1} \left(\ell_t \frac{G_s}{S_s^*} \frac{I_s}{c_s} \right)
\]
\[W_s = \frac{I_s}{c_s} U'^{-1}(\ell_t \phi_s) \]

with

\[\phi_s = \frac{G_s I_s}{S_s^* c_s} \]

Lagrange multiplier \(\ell_t = \ell_0 = c_0 U'(c_0 W_0) \)

\[0 \leq t < s < \infty \]

generally \(W \) maximizes

\[E_t \left(U \left(\frac{c_s W_s}{I_s} \right) \right) \]
• benchmarked accumulated total wealth

\[\frac{W_t G_t}{S^*_t} = M_t W_t G_t = F(\phi_t) \]

with

\[F(\phi) = \phi U'^{-1}(\ell_0 \phi) \]

\[d\phi_t = \phi_t ([c_t + \pi_t - e_t - i_t] dt - \theta_t dz_t) \]
Itô formula

\[d\tilde{W}_t = \frac{\partial}{\partial \phi} F(\phi_t) \phi_t ([c_t + \pi_t - e_t - i_t] \, dt - \theta_t \, dz_t) \]

\[+ \frac{1}{2} \frac{\partial^2}{\partial \phi^2} F(\phi_t) \phi_t^2 \theta_t^2 \, dt \]

Comparison of the drift coefficients

\[0 = c_t + \pi_t - e_t - i_t - \frac{\theta_t^2}{2\gamma} \]
Example:

power utility

\[
U'^{-1}(y) = y^{-\frac{1}{\gamma}}
\]

\[
F(\phi_s) = \ell_0^{\frac{1}{\gamma}} \phi_s^{1-\frac{1}{\gamma}}
\]

⇒

\[\gamma_t = \gamma\]
comparison of diffusion coefficients \[\Rightarrow \]

\[\tilde{W}_t(\alpha_t \sigma_t - \theta_t) = -\frac{\partial}{\partial \phi} F(\phi_t) \phi_t \theta_t \]

\[\Rightarrow \]

\[\alpha_t = \frac{\theta_t}{\tilde{\gamma}_t \sigma_t} \]

with

\[\frac{1}{\tilde{\gamma}_t} = 1 - \phi_t \frac{\frac{\partial}{\partial \phi} F(\phi_t)}{F(\phi_t)} \]

Example: power utility

\[\Rightarrow \tilde{\gamma}_t = \gamma \]
Optimal Interest Rate

assume power utility

⇒ optimal interest rate:

\[\tilde{i}_t = a_t - \gamma \alpha_t \sigma_t^2 \]

cannot become negative \[\implies \]

adjusted interest rate

\[i_t = (\hat{i}_t)^+ \]

\(\hat{i}_t \) - theoretical interest rate

- **negative optimal interest rates**

 Japanese stagnation
great depression
current financial crisis
“quantitative easing”
• change in consumption rate

\[
\frac{dc_t}{dt} = c_t \, e_t
\]

\[
= c_t \left(c_t + \pi_t - i_t - \frac{(a_t - i_t)^2}{2\gamma \sigma_t^2} \right)
\]

\[
= c_t \left(\pi_t - \tilde{\pi}_t - \frac{(i_t - \phi_t)^2}{2\gamma \sigma_t^2} \right)
\]

with critical inflation rate

\[
\tilde{\pi}_t = a_t - c_t - \frac{\gamma \sigma_t^2}{2}
\]

and intrinsic interest rate

\[
\phi_t = a_t - \gamma \sigma_t^2
\]
Figure 2: Inflation versus interest.
applying optimal interest rate

\[\frac{dc_t}{dt} = c_t \left(\pi_t - \tilde{\pi}_t - \frac{\gamma \sigma_t^2}{2} (1 - \alpha_t)^2 \right) \]

\[\Rightarrow \quad \text{Inflation Rate Rule:} \]

\[\pi_t = \tilde{\pi}_t + \frac{\gamma \sigma_t^2}{2} (1 - \alpha_t)^2 \]
1. **Subcritical Inflation**

\[\pi_t < \tilde{\pi}_t \]

\[\implies c_t \text{ decreases} \]

Interest rate does not matter!

Nothing can stop downward trend!

\(a_t \) may decrease

\[\implies \text{recession} \]

Subcritical inflation dangerous!

\[\implies \text{Low inflation rate targeting questionable!} \]
2. **Supercritical Inflation**

\[\pi_t \geq \tilde{\pi}_t \]

- **without sufficient credit clearing**
 \[
 \pi_t - \tilde{\pi}_t < \frac{\gamma \sigma_t^2}{2} (1 - \alpha_t)^2
 \]
 \[\implies c_t \text{ decreasing}
 \]
 not as strong as for \(\pi_t < \tilde{\pi}_t \)

Increased borrowing may further decrease \(c_t \)!

- **reversal:**
 Making inflation sufficiently high
 and balancing credit market!
• Approximating Optimal Interest Rate

Set interest rate i_t slightly above or below some interest rate

$$\bar{i}_t = \phi_t + \sqrt{2 \gamma \sigma_t^2 (\pi_t - \tilde{\pi}_t)}$$

• $i_t > \bar{i}_t$

$$\Rightarrow (i_t - \phi_t)^2 \geq 2 \gamma \sigma_t^2 (\pi_t - \tilde{\pi}_t)$$

$$\Rightarrow c_t \text{ decreasing}$$

• $\phi_t < i_t < \bar{i}_t$

$$\Rightarrow c_t \text{ increasing}$$

convenient mechanism
• for $\alpha_t < 1$ and inflation rate rule

$\implies \hat{i}_t = \tilde{i}_t$ optimal interest rate

and

$$\pi_t - \tilde{\pi}_t = \frac{\gamma \sigma_t^2}{2} (\alpha_t - 1)^2$$

• For $\alpha_t > 1$

\hat{i}_t not close to \tilde{i}_t

Keep the inflation rather small!

less optimal
Interest Rate Rule:

\[i_t = (\tilde{i}_t)^+ = \left(a_t - \gamma \sigma_t^2 (1 - |1 - \alpha_t|) \right)^+ \]

assuming optimal inflation
- Create an economic environment where

\[a_t > \gamma \alpha_t \sigma_t^2 \implies \tilde{i}_t > 0 \]

\[\implies \text{Avoid extended long boom with subsequent crash!} \]

No cheap credit!

otherwise economic trap with zero interest
• target inflation rate level

\[\pi_t = a_t - c_t + \frac{\gamma \sigma_t^2}{2} \alpha_t (\alpha_t - 1) \]

after crash may be deflationary period if \(\alpha_t \in (0, 1) \)
when π_t on target, $\tilde{i}_t > 0$, $\alpha_t < 1$

\implies can steer the economy:

\[i_t > \tilde{i}_t \Rightarrow c_t \downarrow \]

\[i_t < \tilde{i}_t \Rightarrow c_t \uparrow \]

strongest impact on upward trend for

\[i_t \approx \phi_t = a_t - \gamma \sigma_t^2 \]

optimal wealth evolution
when π_t on target, $\tilde{i}_t > 0$, $\alpha_t > 1$

\implies can steer the economy:

$$i_t > (\tilde{i}_t)^+ \implies c_t \downarrow$$

$$i_t < (\tilde{i}_t)^+ \implies c_t \uparrow$$

non-optimal wealth evolution

Set inflation π_t slightly above $\tilde{\pi}_t$!

Dangerous, could become subcritical
• when credit market clears

\[\alpha_t = 1 \]

\[\implies \text{target inflation rate minimal} \]

least likely to have economic trap
For $c_t = c$, minimal inflation, $\alpha_t = 1 \implies$

$$U \left(\frac{cW_t}{I_t} \right) = E_t \left(U \left(\frac{cW_s}{I_s} \right) \right)$$

fair monetary policy
• benchmarked accumulated wealth

trendless

\[
\frac{W_t G_t}{S_t^*} = E_t \left(\frac{W_s G_s}{S_s^*} \right)
\]

achieved in the least expensive manner
<table>
<thead>
<tr>
<th>Country</th>
<th>α</th>
<th>i</th>
<th>π</th>
<th>σ</th>
<th>d</th>
<th>θ</th>
<th>$\gamma \alpha$</th>
<th>c</th>
<th>π_{min}</th>
<th>$\pi - \pi_{\text{min}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>0.119</td>
<td>0.045</td>
<td>0.041</td>
<td>0.177</td>
<td>0.048</td>
<td>0.418</td>
<td>2.362</td>
<td>0.0910</td>
<td>0.034</td>
<td>0.007</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.082</td>
<td>0.052</td>
<td>0.055</td>
<td>0.228</td>
<td>0.028</td>
<td>0.132</td>
<td>0.577</td>
<td>0.0056</td>
<td>0.039</td>
<td>0.016</td>
</tr>
<tr>
<td>Canada</td>
<td>0.097</td>
<td>0.049</td>
<td>0.031</td>
<td>0.168</td>
<td>0.041</td>
<td>0.286</td>
<td>1.701</td>
<td>0.0590</td>
<td>0.032</td>
<td>-0.001</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.089</td>
<td>0.070</td>
<td>0.041</td>
<td>0.201</td>
<td>0.044</td>
<td>0.095</td>
<td>0.470</td>
<td>0.0334</td>
<td>0.035</td>
<td>0.006</td>
</tr>
<tr>
<td>France</td>
<td>0.121</td>
<td>0.043</td>
<td>0.079</td>
<td>0.231</td>
<td>0.036</td>
<td>0.338</td>
<td>1.462</td>
<td>0.0210</td>
<td>0.046</td>
<td>0.033</td>
</tr>
<tr>
<td>Germany</td>
<td>0.097</td>
<td>0.046</td>
<td>0.051</td>
<td>0.323</td>
<td>0.036</td>
<td>0.158</td>
<td>0.489</td>
<td>0.0075</td>
<td>0.035</td>
<td>0.016</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.095</td>
<td>0.058</td>
<td>0.045</td>
<td>0.222</td>
<td>0.033</td>
<td>0.167</td>
<td>0.751</td>
<td>0.0027</td>
<td>0.044</td>
<td>0.001</td>
</tr>
<tr>
<td>Italy</td>
<td>0.120</td>
<td>0.047</td>
<td>0.091</td>
<td>0.294</td>
<td>0.038</td>
<td>0.248</td>
<td>0.845</td>
<td>-0.013</td>
<td>0.045</td>
<td>0.046</td>
</tr>
<tr>
<td>Japan</td>
<td>0.125</td>
<td>0.054</td>
<td>0.076</td>
<td>0.303</td>
<td>0.057</td>
<td>0.234</td>
<td>0.773</td>
<td>0.0055</td>
<td>0.033</td>
<td>0.043</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.090</td>
<td>0.037</td>
<td>0.03</td>
<td>0.210</td>
<td>0.049</td>
<td>0.252</td>
<td>1.202</td>
<td>0.0390</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>S. Africa</td>
<td>0.120</td>
<td>0.057</td>
<td>0.048</td>
<td>0.228</td>
<td>0.025</td>
<td>0.276</td>
<td>1.212</td>
<td>0.0470</td>
<td>0.064</td>
<td>-0.016</td>
</tr>
<tr>
<td>Spain</td>
<td>0.100</td>
<td>0.065</td>
<td>0.061</td>
<td>0.220</td>
<td>0.047</td>
<td>0.159</td>
<td>0.723</td>
<td>0.0300</td>
<td>0.036</td>
<td>0.025</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.116</td>
<td>0.058</td>
<td>0.037</td>
<td>0.228</td>
<td>0.035</td>
<td>0.254</td>
<td>1.116</td>
<td>0.0530</td>
<td>0.052</td>
<td>-0.015</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.076</td>
<td>0.033</td>
<td>0.022</td>
<td>0.204</td>
<td>0.029</td>
<td>0.211</td>
<td>1.033</td>
<td>0.0330</td>
<td>0.026</td>
<td>-0.004</td>
</tr>
<tr>
<td>UK</td>
<td>0.101</td>
<td>0.051</td>
<td>0.041</td>
<td>0.200</td>
<td>0.038</td>
<td>0.250</td>
<td>1.250</td>
<td>0.0410</td>
<td>0.030</td>
<td>0.003</td>
</tr>
<tr>
<td>US</td>
<td>0.101</td>
<td>0.041</td>
<td>0.032</td>
<td>0.202</td>
<td>0.041</td>
<td>0.297</td>
<td>1.470</td>
<td>0.0530</td>
<td>0.030</td>
<td>0.002</td>
</tr>
<tr>
<td>Average</td>
<td>0.103</td>
<td>0.050</td>
<td>0.049</td>
<td>0.227</td>
<td>0.039</td>
<td>0.236</td>
<td>1.090</td>
<td>0.0330</td>
<td>0.038</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Table 1: Estimates from sixteen markets
• market price of risk

\[\theta \approx \frac{a - i}{\sigma} \approx 0.236 \]

• fraction times risk aversion

\[\gamma \alpha \approx \frac{a - i}{\sigma^2} = \frac{\theta}{\sigma} \approx 1.09 \]
• consumption rate for $\alpha = 1$

\[c \approx i - \pi + \frac{(a - i)^2}{2 \gamma \sigma^2} \approx 0.033 \approx 0.039 = d \]

• critical inflation

\[\tilde{\pi} \approx a - c - \frac{\gamma \sigma^2}{2} \approx 0.038 \leq 0.049 \approx \pi \]
References

